
Hardware Acceleration of Graph Neural Networks
Adam Auten

Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

auten2@illinois.edu

Matthew Tomei
Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
tomei2@illinois.edu

Rakesh Kumar
Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
rakeshk@illinois.edu

Abstract—Graph neural networks (GNNs) have been shown to extend
the power of machine learning to problems with graph-structured inputs.
Recent research has shown that these algorithms can exceed state-of-
the-art performance on applications ranging from molecular inference
to community detection. We observe that existing execution platforms
(including existing machine learning accelerators) are a poor fit for GNNs
due to their unique memory access and data movement requirements. We
propose, to the best of our knowledge, the first accelerator architecture
targeting GNNs. The architecture includes dedicated hardware units
to efficiently execute the irregular data movement required for graph
computation in GNNs, while also providing high compute throughput
required by GNN models. We show that our architecture outperforms
existing execution platforms in terms of inference latency on several key
GNN benchmarks (e.g., 7.5x higher performance than GPUs and 18x
higher performance than CPUs at iso-bandwidth).

I. INTRODUCTION

There has been considerable recent interest in machine learning
algorithms that operate on graph-structured data. One such class of
algorithms, Graph Neural Networks (GNNs) [13], has generated par-
ticular interest due to their ability to outperform existing techniques in
many applications [18], [16]. GNNs can be described as an extension
of the popular Deep Neural Network (DNN) [5] that allows the
networks to natively support graph-structured inputs, outputs, and/or
internal state. While this extension improves inference performance
metrics, it also introduces computations that are not a good fit for
existing machine learning accelerators (Section II).

Fig. 1: General structure of a convolutional GNN network.

An almost entirely dominant sub-class of GNNs focuses on graph
convolutions [11], [15], [7], [3]. A generic diagram of the structure
of a convolutional GNN (ConvGNN) is shown in Figure 1. A graph
with features is presented as input to a sequence of ConvGNN
layers. Each layer propagates and aggregates features according to
the underlying graph structure, and subsequently projects this feature
onto a new subspace via a learned projection matrix. Finally, a
nonlinear activation is optionally used on the resulting node features.
The projection and nonlinear step can be seen as a traditional batched
fully-connected layer or convolutional layer, depending on whether
a single or the whole set of node states are considered as input. The
final output layer produces a graph with transformed node features.

In this paper, we analyze ConvGNN model implementations to
develop an understanding of the hardware requirements for efficient
execution. We then leverage our understanding of GNN models

and their implementations to develop an architecture for efficient
acceleration of GNN-based inference. To the best of our knowledge,
this is the first architecture for accelerating GNNs. Finally, we
compare the performance of our inference accelerator against existing
platforms and report significant performance benefits (7.5x higher
performance than GPUs and 18x higher performance than CPUs at
iso-bandwidth).

II. DO GNNS NEED A NEW ACCELERATOR?

GNN models can be thought of a composition of traditional graph
and DNN algorithms. For example, projections of vertex features onto
a subspace through a learned projection matrix are equivalent to a
batched fully-connected layer in a neural network, while message
passing or graph convolution steps are common operations in graph
algorithms. While hardware accelerators for both classes of applica-
tions have been developed, the resulting architectures have important
differences. Graph accelerators are typically MIMD architectures
to extract irregular parallelism and typically provide high random-
access memory bandwidth with relatively small access sizes. DNN
accelerators typically opt for a SIMD architecture to exploit regularity
in the application, and include caches or scratchpads to exploit data
locality. An accelerator architecture for GNN inference will need
elements of each class of accelerators. However, the exact nature of
composition is non-obvious.

In order to determine the degree to which the graph components
of a GNN algorithm introduce inefficiencies when run on a DNN
accelerator, we modeled the execution of a Graph Convolutional Net-
work (GCN- a popular GNN) on a Eyeriss-like [2] spatial architecture
(Table I) with 182 processing elements (PEs). We describe the GCN
algorithm as a series of convolutional and fully connected layers for
three input graphs: Cora, Citeseer, and Pubmed, whose sizes can
be found in Table V. The graph convolution step is modeled as a
matrix multiplication with the adjacency matrix, and implemented
as a convolution with the adjacency matrix as the weights. NN-
Dataflow [6] is used for dataflow scheduling and analysis of inference
latency, required off-chip bandwidth, and PE utilization. To measure
how much computation and memory bandwidth is wasted due to
computation on zero entries in the adjacency matrix, we separately
measure the compute operations and memory accesses due to non-
zero entries in the matrix for layers that operate on the adjacency
matrix.

Figure 2 shows the bandwidth and PE utilization for GCN execut-
ing on the reference DNN spatial architecture accelerator. Table II
lists the measured inference latency for each input graph assuming
an aggressive clock frequency of 2.4 GHz. For all GCN input graphs
that were considered, most of the compute and memory bandwidth is
wasted due to the sparsity of the input graph. The degree of wasted
compute and memory bandwidth depends largely on the sparsity
of the input graph. For the sparsest input (Pubmed, at 99.989%
sparse), only 1% of the memory requests and 2% of the compute
are useful in performing the final inference. In general, this results in
a significant amount of energy being wasted on unnecessary memory
accesses. It also increases inference latency on systems where off-978-1-5386-5541-2/18/$31.00 c©2020 IEEE

Number of PEs 182
PE configuration 13 x 14
Register File Size 512B
Global Buffer Size 108kB
Precision 32-bit fixed point

TABLE I: Configuration of the spatial ar-
chitecture DNN accelerator, modeled after
the silicon-proven Eyeriss DNN accelera-
tor.

Input Graph Inference Latency (ms)
Unlimited BW 68GBps BW

Cora 0.791 1.597
Citeseer 1.434 2.661
Pubmed 22.129 64.636

TABLE II: Inference Latencies of GCN
on DNN spatial architecture accelerator,
assuming a 2.4 GHz clock. Fig. 2: Measured off-chip bandwidth and PE uti-

lization of GCN model running on a DNN spatial
architecture accelerator. Useful bandwidth and utiliza-
tion counts only non-zero entries in operations on the
adjacency matrix

Fig. 3: Block diagram of a tile in the GNN accelerator showing
hardware modules, NoC, and connections to external tiles

chip bandwidth is constrained (Section VI). This motivates the need
to design accelerators specifically targeting GNNs.

Several recent works optimize DNN accelerators to exploit sparsity
in matrices for traditional DNN workloads (e.g., [9]) and demonstrate
significant benefits. However, this sparsity is at least two orders of
magnitude lower than the sparsity in a sparse graph typically inputted
to a GNN. For example, in the work by Han et al[9], 88.9-92.3% of
the elements can be removed without impacting accuracy of learning.
For our graph inputs, on the other hand, 99.8% values in the dense
vertex adjacency matrices are 0. I.e., useful elements occur at a rate
∼ 100× lower than in our graph inputs. Due to this multiple order of
magnitude difference in useful elements, previous DNN accelerator-
based approaches are inadequate for GNNs. For example, even though
the input and output to their compute logic is sparse, they work
with dense representations of the inputs when scheduling the useful
operations to be performed. For very sparse matrices, that scheduler
can lead to low PE utilization since so little of the work considered
is useful.

One approach to efficiently deal with massive sparsity is to gener-
ate a sparse representation of the graph and dynamically generate a
work list. This is the approach used by graph accelerators(e.g., [17]).
Unfortunately, while graph accelerators are a good fit the inter-vertex
communication components of GNNs, they are a poor fit for the per-
vertex components. Unlike DNN accelerators, graph accelerators do
not exploit the memory locality and regular parallelism of the per-
vertex computations in GNNs. They do not have the large arrays of
compute units required to efficiently perform the statically predictable
portion of the computation. They are also built to favor the small
memory accesses typical to graph applications[8] due to their small
per-vertex state. GNNs, on the other hand, often have large per-vertex
state and could, therefore, benefit from wide accesses.

III. AN ACCELERATOR ARCHITECTURE FOR GNNS

To design a GNN accelerator, we analyzed several GNN bench-
marks (Section V) and observed that the operations required for

the execution of vertex-programmed GNNs fall into three distinct
categories with unique computational characteristics: graph traver-
sal, DNN computation, and aggregation. Graph traversal includes
operations required for navigating the underlying graph structure,
and typically requires sequences of two or more dependent memory
accesses. DNN computation includes vertex-local operations that
operate on dense data representations, such as the projection of a
vertex feature onto an intermediate space through a learned matrix
(i.e. a fully-connected neural network layer). Aggregation includes
reduction operations with input and output sizes that depend on the
graph input to the GNN.

Figure 3 shows the key hardware blocks and datapath within
our accelerator tile that supports those three categories. The Graph
Processing Element (GPE) is responsible for graph traversal and
sequencing computation steps which are dependent on the underlying
graph structure (e.g. aggregation). The DNN Accelerator (DNA) is re-
sponsible for executing the DNN computation within the GNN model.
The AGG (aggregator) is responsible for performing aggregation of
the features, and is coordinated by the GPE according to the graph
traversal. Finally, the DNN queue (DNQ) is responsible for buffering
memory requests and intermediate results as they are passed to the
DNA. Each block is connected to a configurable bus which allows
various types of GNN dataflows to be supported.

Graph PE: At a high level, the GPE (Figure 4) functions as a
control core, coordinating other elements on the system. The GPE
consists of a general purpose CPU which executes a lightweight
runtime. The runtime manages a pool of software threads and
schedules them according to system load. It also performs global
synchronization, which is required between layers to ensure the exe-
cuting vertex program reaches a consistent state across all accelerator
modules.

The GPE also has a scratchpad memory to hold the application state
and binary. The interface to main memory is specialized to allow the
GPE to issue indirect asynchronous memory requests. These requests
are supported by a dedicated flit buffer from which data is written into
the scratchpad as data is received from the NoC without requiring
core intervention. Finally, an allocation bus connects the GPE to the
DNN Queue (DNQ) and the Aggregator (AGG) modules, allowing
the GPE to request scratchpad space on each module for dataflow
mapping.

DNN Queue: The DNN Queue (DNQ) (Figure 6) is responsible
for staging inputs to the spatial architecture accelerator and providing
support for multiple simultaneous DNN models. The queue supports
delayed enqueues, which allow queue space to be allocated before

Fig. 4: Block diagram of the
GraphPE module

Fig. 5: Block diagram of the DNN
Accelerator module Fig. 6: Block diagram of the DNN

Queue module

Fig. 7: Block diagram of the Ag-
gregator module

data is written. A large scratchpad (62kB) provides storage for
the queue and ready bits, which are required due to the delayed
writes. A second scratchpad (2kB) stores destination information for
routing responses. A control logic manages queue allocation, while
the destination buffer stores allocation-related information.

The control logic maintains two sets of head and tail pointers,
allowing it to manage two virtual queues. The relative size of each
queue is configurable at runtime via the allocation bus. Due to the
single dequeue interface, only one queue may dequeue at a time. A
lazy queue switching algorithm is used, whereby the queue eligible
for dequeue is only switched when the DNA has been idle for 16
cycles. This acts to reduce the number of queue switches that need
to occur.

The DNQ contains a single slave NoC port, which can accept flits
from the network. Incoming flits are stored in the flit buffer, decoded,
and subsequently written into the scratchpad at the appropriate queue
location. Ready bits are maintained for every 4B word in the queue
and set upon fill and unset upon dequeue. An allocation bus is
connected to the GPE which allows it to request queue entries and
fill in their associated destination entries. These destination entries
represent the NoC addresses which will be used to route the final
results once the queue entries have been processed by the DNA.

Once the entry at the head of the queue is marked ready, its entry
is read out of the scratchpad and sent to the DNA along with its
destination from the destination buffer.

DNN Accelerator: The DNN Accelerator (DNA) (Figure 5) is
responsible for executing the DNN phases of the GNN algorithms.
Because the DNN phases of GNNs are computationally similar to
those supported by existing spatial architecture accelerators, we reuse
such an architecture here.

The DNA has two interfaces to the rest of the GNN accelerator. A
read port from the DNQ provides output routing information via the
destination port, as well as input data to the DNN model. Outputs
from the spatial architecture accelerator are sent to the flit buffer,
where they are combined with their destination into a flit and sent
to the NoC. The internal spatial architecture accelerator is sized
according to Table I.

Aggregator: The Aggregator (AGG) (Figure 7) is responsible for
performing the aggregation steps in a GNN model, and manages a
pool of in-progress aggregations. The AGG only supports aggregation
operations that are associative, which allows data to be aggregated
in any order. It contains a pair of scratchpads for control (2kB)
and data storage (62kB), a bank of 16 32-bit ALUs, control logic,
and a bidirectional NoC port. Additionally, an allocation port is
included, which allows the GPE to configure the AGG and allocate
new aggregations.

As packets from the network arrive at the AGG, their address is used

to determine which aggregation they belong to. A bank of ALUs is
used to aggregate the incoming data with the existing aggregation
read out of the data scratchpad. Additionally, a per-aggregation
count is decremented to keep track of remaining elements in the
aggregation. Once the count reaches 0, the aggregation is complete
and the data are sent to the destination for that aggregation, which
is configured at allocation time and stored in the control scratchpad.

A control logic manages allocation to the data scratchpad and
sequences ALU operations in accordance with incoming NoC traffic.
The scratchpad is managed by a control logic, which divides the
scratchpad into a number of evenly-sized entries. The size of these
entries are configurable at runtime. The control logic uses a 2kB
control scratchpad which stores per-aggregation metadata, including
the destination address used to send the result once the aggregation
is complete.

Algorithm 1 Accelerator Runtime
1: global variables
2: layers . sequence of layers in the GNN model
3: graph . the input graph
4: inQueue . the input work queue
5: outQueue . the output work queue
6: end global variables
7: procedure INIT
8: for n ∈ graph.nodes do
9: inQueue.enqueue(n)

10: end for
11: end procedure
12: procedure RUNTIME
13: for layer ∈ layers do
14: CONFIG(layer.config) . sets up DNA, DNQ and AGG
15: SYNC . ensure all modules are configured
16: while inQueue.notEmpty() do
17: n← inQueue.dequeue()
18: layer.runVertex(graph, n)
19: outQueue.enqueue(n)
20: end while
21: swap(inQueue, outQueue)
22: SYNC . ensure all modules have completed work
23: end for
24: end procedure

IV. RUNTIME

The GNN Accelerator program describes a GNN model as an
ordered sequence of layers. Each layer takes as input a graph on
which it performs a vertex program to produces an output graph.
These layers are strung together in a sequence to implement a full
GNN model. The first layer takes the model input as its input graph,
while subsequent layers use the output of the preceding layer. The
final layer produces the output graph.

The execution of these layers is managed by a software runtime,
shown in Algorithm 1. In memory work queues, inQueue and
outQueue, are used to track unprocessed vertices, and are shared
across all GPEs. Global synchronization barriers between each layer

Parameter Value

CPU 14-core Intel Xeon E5-2680v4 @ 2.4GHz
Memory 128GB of 4x DDR4-2133
GPU NVIDIA Titan XP @ 1582 MHz
GPU Memory 12GB of GDDR5X @ 547.7 GB/s

TABLE III: Baseline system architecture

ensure all prior work has been completed and all hardware units are
idle.

Each layer has two distinct components. The first is system
configuration, shown on line 14, which describes the configuration
of all hardware modules in the accelerator, i.e. the number of queues
and size of each element in the DNQ, the number of elements and
operation in each AGG aggregation, and the DNN layer dataflows for
the DNA. Separated from the first component by a global barrier on
line 15, the second component is a vertex program that describes the
dataflow required to compute one output vertex in the layer. The loop
starting on line 16 executes this vertex program for all vertices in the
inQueue.

The runtime also manages a pool of software threads, allowing
several vertices to be processed simultaneously. Whenever a memory
load is requested, the system issues a non-blocking memory request,
and stores a sentinel value in the scratchpad destination. The GPE
then performs a software context switch to another thread. Since all
program state is stored in the scratchpad, these context switches can
be performed inexpensively. We estimate that with minimal hardware
overhead, the latency of such a switch can be performed in a single
cycle.

V. METHODOLOGY

GNN Benchmarks: We used the following four GNN models
for our evaluations A) Graph Convolutional Networks (GCNs) [11]:
The GCN is a spectral-based ConvGNN that reaches state-of-the-art
accuracy on several text classification and knowledge graph datasets
B) Graph Attention Networks (GATs) [15]: The GAT model augments
the traditional graph convolution techniques used in ConvGNNs with
a self-attention layer and drops the degree normalization term. It can
be applied to directed graphs as well as to graphs unseen during
training since it does not rely on the degree term. C) Message
Passing Neural Networks (MPNNs) [7]: The MPNN is a generic
class of spatial GNN that can be used to estimate real-valued
functions over graph structured inputs. A message passing algorithm
is iterated several times across nodes in the input graph, after which
the global state is aggregated into an estimate. D). Power Graph
Neural Networks (PGNN) [3]: The PGNN incorporates a multi-hop
convolution and is often used as a component in a more complex Line
Graph Neural Network model. Our selection of benchmarks provides
adequate diversity across several dimensions in a GNN algorithm:
spatial versus spectral convolution, different aggregation schemes,
large vs small models, and different types of graph traversal.

GNN Accelerator Model: We developed a Booksim [12]-based
custom simulation model for our accelerator. The simulator takes
network topology and configuration as inputs (our network parameter
values are in Table IV). During simulation, it connects the various
accelerator tiles in our design and sequences the messages passed
between tile modules. Booksim is a cycle accurate network simulator,
so our simulation infrastructure can be thought of as a collection of
packet generators connected to a network where the packet generators
are models of the different components of the system.

For the memory controllers, we implement a simple bandwidth-
latency model that enqueues up to 32 requests and services them
in order according to the latency and bandwidth configuration. Each

memory module is capable of servicing 68GBps of read/write traffic,
which is roughly equivalent to 4 channels of DDR3-2400 memory.
We assume a memory access granularity of 64B, and requests which
are not integer multiples of 64B and properly aligned will result in
wasted DRAM bandwidth but not wasted interconnect bandwidth.

For the GraphPE, we use an event-driven model where certain
program steps require a certain latency. The program is broken up
into steps such that any communication with other components in the
system falls between steps and can have nondeterministic latency. The
steps can reasonably be assumed to have deterministic latency due to
the simplicity of the GraphPE cores. The sequence of program steps
by the GraphPE is configurable at runtime to realize the execution
of our different GNN benchmarks. Our GraphPE models a single
threaded microprocessor with scratchpad for program and data. We
assume that each ALU operation, memory access, or IO-operation
executes in a single cycle.

The DNN Accelerator is modeled using a latency-throughput
model similar to the memory controllers. NN-Dataflow[6] is used
to map DNN models onto a Eyeriss-like single-tile spatial array
accelerator with 182 PEs configured in a 13x14 array.

The Accumulator is modeled as a simple bank of 16 ALUs, a
scratchpad, and a hardware FIFO to manage scratchpad allocation.
We assume it takes one cycle to allocate an entry in the ALU
scratchpad, and that the accumulator can issue one memory store
per cycle, provided there is sufficient space in its 2kB flit buffer,
which is drained one flit per cycle.

Input Datasets: Our choice of input graphs (Table V) for GCN
and GAT come directly from their reference implementations: cora,
pubmed, and citeseer for GCN, and cora for GAT. For MPNN, we
choose the first 1000 graphs in the QM9 dataset (used in the reference
implementation) to reduce simulation runtime. For PGNN, we use as
the input a subgraph extracted from the DBLP dataset in a manner
similar to [3]. Each graph also has a number of output features which
are the results of the GNN inference. For Citeseer, Cora, Pubmed, and
DBLP, these correspond to node labels. For QM9, these correspond to
features which can be used to infer properties about the graph. In the
DBLP graphs used for PGNN, no vertex or edge features are present.
To accommodate this, the reference implementation uses the vertex
degree as a single-element vertex state, a technique we duplicate in
our evaluation.

Accelerator Configurations: We explore three configurations
(Table VI, Figure 9) of our accelerator to help us compare against
our baseline CPU and GPU systems (Table III). The first two
configurations, CPU iso-bandwidth and GPU iso-bandwidth, match
the memory bandwidth of our CPU and GPU baseline systems by
tiling accelerators in a 2D mesh. The third configuration, GPU iso-
FLOPS, contains roughly the same number of floating point units as
our GPU baseline to help us gauge the utilization of our available
compute.

VI. RESULTS

As mentioned above, we evaluate our accelerator architecture
against two baselines - an off-the-shelf CPU-based system and a
second system that includes both a CPU and a GPU (Table III lists
the characteristics of the CPU used in the two baselines and the
GPU used in the second baseline). Using reference implementations
of the our benchmark sets [10][14][4][1], we measure the inference
latency on each baseline system and report results in Table VII. For
the GAT baseline measurement, the attention normalization step was
removed to match our accelerator implementation in Section IV. For
the GPU system measurements, only GPU kernel time is considered

Parameter Value

Link Delay 1 cycle
Routing Delay 1 cycle
Input buffers 4 flits, 256B
Routing algorithm min-routing

TABLE IV: Booksim NoC Model
Parameters

Dataset Graphs Total Total Vertex Edge Output
Nodes Edges Features Feat. Feat.

Cora 1 2708 5429 1433 0 7
Citeseer 1 3327 4732 3703 0 6
Pubmed 1 19717 44338 500 0 3
QM9 1000 1000 12314 12080 13 5 73
DBLP 1 1 547 2654 1 0 3

TABLE V: Input dataset statistics

Configuration Tiles Mem.
Nodes

ALUs Mem.
BW
(GBps)

CPU iso-BW 1 1 198 68
GPU iso-BW 8 8 1584 544
GPU iso-FLOPS 16 8 3168 544

TABLE VI: GNN accelerator config-
urations used in our evaluations

Benchmark Input Graph Inference Latency (ms)
CPU System GPU system

GCN Cora 3.50 0.366
GCN Citeseer 3.97 0.391
GCN Pubmed 30.11 0.893
GAT Cora 13.60 0.801
MPNN QM9 1000 2716.00 443.3
PGNN DBLP 1 15.70 7.50

TABLE VII: Measured inference latencies of the reference
implementations of the GNN benchmark applications execut-
ing on the CPU and GPU systems.For the GPU system, only
the GPU kernel execution times are considered.

0.1

1

10

100

G
C

N
 C

o
ra

G
C

N
 C

it
es

ee
r

G
C

N
 P

u
b

m
e

d

G
A

T
C

o
ra

M
P

N
N

Q
M

9
_1

0
0

0

P
G

N
N

 D
B

LP
_1

G
C

N
 C

o
ra

G
C

N
 C

it
es

ee
r

G
C

N
 P

u
b

m
e

d

G
A

T
C

o
ra

M
P

N
N

Q
M

9
_1

0
0

0

P
G

N
N

 D
B

LP
_1

G
C

N
 C

o
ra

G
C

N
 C

it
es

ee
r

G
C

N
 P

u
b

m
e

d

G
A

T
C

o
ra

M
P

N
N

Q
M

9
_1

0
0

0

P
G

N
N

 D
B

LP
_1

CPU Iso-BW GPU Iso-BW GPU Iso-FLOPS

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

GNNA @ 2400MHz GNNA @ 1200 MHz GNNA @ 400MHz GNNA @ 300 MHz GNNA @ 200 MHz

Fig. 8: Normalized speedups of the CPU iso-BW, GPU iso-BW, and multi-tile
GNNAs over the CPU, GPU, and GPU iso-FLOPS configuration respectively

Fig. 9: Topology of GNN accelerator configurations used in our
evaluations.

to isolate architectural performance and remove contributions of the
OS/GPU runtime. Note that the GCN, GAT, and MPNN, use sparse
matrix operations where applicable, so these implementations should
be reasonably performant.

It is instructive to compare the measured latency numbers for GCN
on the CPU and the GPU baselines (Table VII) against those modeled
on a DNN accelerator (Table II). Recall that the DNN accelerator
contains 182 compute units while the CPU system only has 14.
Despite the 13x more compute, the DNN accelerator is outperformed
by the CPU on the sparsest graph in our dataset, Pubmed. This can
be explained by considering that, for Pubmed, the accelerator wastes
97% of its compute due to sparsity, giving an effective throughput
of only 5.4 operations per cycle. For graphs with lower sparsity
(Cora and Citeseer), fewer operations are wasted due to sparsity and
the higher compute throughput causes the accelerator to outperform
the CPU baseline. This comparison shows that, in order to scale
performance to sparse graphs, the ability to execute sparse operations
is as important as compute throughput.

To compare our GNN accelerator against our baseline systems, we
perform three experiments, each using a different configuration for
the GNN accelerator, depicted in Figure 9 and described in Table VI.

A. CPU Iso-Bandwidth

We measure the inference latency of our benchmark GNN models
for various input graphs on the CPU iso-bandwidth configuration of
our accelerator. We sweep several clock frequencies to determine
the sensitivity to clock scaling. The left third of Figure 8 shows
that our accelerator provides speedups for all benchmarks except
PGNN. To help us interpret these results, we also plot several
performance metrics in Figure 10. For the GCN benchmarks, a
bandwidth utilization of 79%, 70%, and 54% is observed for the
Cora, Citeseer, and Pubmed inputs. Compared to the useful bandwidth
requested by a similarly-sized DNN accelerator (Figure 2, these rep-
resent utilization improvements of +61% +39% +53%, respectively.
The improved utilization of available memory bandwidth directly
translates to performance improvements.

We see that the benchmarks with larger portions of DNA compu-
tations see the largest speedups. GAT, MPNN are two of the best
performers, and have the most computation being executed on the
DNA. This is due to the roughly 14x compute bandwidth compared
to the CPU baseline.

PGNN does not see any benefit from our accelerator, and sees
a 12% increase in inference latency at the maximum clock of 2.4
GHz. This is likely due to a combination of factors. First, the input
graph on the PGNN model is relatively small, as there is only a
single feature per vertex and the number of vertices are relatively
small (see Table V). For a working set this small, the CPU caches
and prefetching do well at hiding the memory latency, whereas we
assume a fixed 20ns latency to memory in our accelerator. Figure 10
shows that the PGNN benchmark shows very little DNA utilization.
This is because of the complicated graph traversal required largely
outweighs the simple dense matrix vector operations executing on the
DNA. As such, the GPE becomes the bottleneck, preventing saturation
of DNNA compute.

B. GPU Iso-Bandwidth and Iso-FLOPS

We use the GPU iso-bandwidth configuration to evaluate our
accelerator against a GPU-like system with 547 GB/s of memory
bandwidth. The middle of Figure 8 shows the inference latencies
normalized to the GPU baseline latencies given in Table VII. We see
that even when comparing our architecture to a similarly equipped
GPU system, there are speed-ups across all benchmarks at 1.2 GHz
clocks and above.

For GCN Pubmed and GAT Cora, speedups are slightly reduced
to those in the CPU iso-bandwidth evaluation, which is due to the

Fig. 10: Observed mean memory bandwidth and DNA utilization of
all benchmarks in the CPU iso-bandwidth configuration

greater compute throughput available in the GPU baseline. Interets-
ingly, the speed-ups for the GCN Cora and Citeseer benchmarks
see marginal reductions in speedups compared to the CPU iso-
bandwidth comparisons. This is due to the fact that these baselines
have relatively low compute requirement, and are thus bottlenecked
in both cases by the bandwidth to memory.

However, models with small input graphs (PGNN and MPNN) see
improved speedups comparing to the CPU platform. We believe this
is because the GPU in our baseline system can only perform relatively
wide accesses, so the smaller graphs use this bandwidth inefficiently.

As another comparison against a GPU system, we measured
speed-ups against our GPU iso-FLOPS configuration, which has a
comparable number of ALUs as the GPU baseline. The simulated
speed-ups are given in the right third of Figure 8 relative to the
measured GPU latencies in Table VII.

Models with very high compute requirement, such as MPNN, see
the greatest speedups at over 60x compared to the GPU baseline
system. However, all other models see speedups similar to that in
the GPU iso-bandwidth evaluations. This shows that the remaining
models are not compute bound, and are instead bound by memory
bandwidth or latency. This can also be seen by comparing the
speedups at 2.4GHz vs those at 1.2GHz. In both cases, the NoC
and memory bandwidth are identical, but at 1.2GHz, the DNA and
GPE have half of the throughput. In Figure 8, we see that for GCN,
GAT, and PGNN, there is little change in speedup between 2.4 and
1.2GHz, which supports our claim that the system is memory-bound.

VII. CONCLUSION

Graph neural networks (GNNs) have been shown to extend the
power of machine learning to problems dealing with graph-structured
inputs. In this paper, we showed that existing execution platforms
do not perform well for GNNs given their unique memory and
data movement requirements. We analyzed several popular GNN
algorithms to uncover the fundamental building blocks of an accel-
erator for GNNs. The proposed GNN accelerator connects dedicated
hardware units for graph traversals, dense matrix operations, and
graph aggregations using a flexible NoC to enable efficient execution
of the irregular data movements required for graph computation. We
showed that our architecture outperforms existing execution platforms
in terms inference latency on several key GNN benchmarks (e.g.,

7.5x higher performance than GPUs and 18x higher performance
than CPUs at iso-bandwidth).

ACKNOWLEDGMENTS

The authors would like to thank Patrick McGrady for his initial
studies, anonymous reviewers for their feedback, and Samsung for
its partial support of the work.

REFERENCES

[1] afansi. Implementation of the paper ”Community Detection with Graph
Neural Networks”, [1] in Pytorch: afansi/multiscalegnn, August 2019.
original-date: 2018-01-05T21:34:29Z.

[2] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional neural net-
works. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on, pages 367–379. IEEE, 2016.

[3] Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised Community
Detection with Line Graph Neural Networks. arXiv:1705.08415 [stat],
May 2017. arXiv: 1705.08415.

[4] Fei Ding. Graph Neural Networks for Quantum Chemistry. Contribute
to ifding/graph-neural-networks development by creating an account on
GitHub, July 2019. original-date: 2018-03-06T14:29:27Z.

[5] X. Du, Y. Cai, S. Wang, and L. Zhang. Overview of deep learning. In
2016 31st Youth Academic Annual Conference of Chinese Association
of Automation (YAC), pages 159–164, November 2016.

[6] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos
Kozyrakis. TANGRAM: Optimized Coarse-Grained Dataflow for Scal-
able NN Accelerators. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS ’19, pages 807–820, Providence, RI, USA,
2019. ACM Press.

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural Message Passing for Quantum Chemistry.
arXiv:1704.01212 [cs], April 2017. arXiv: 1704.01212.

[8] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13, October 2016.

[9] Song Han, Huizi Mao, and William J. Dally. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quantization
and Huffman Coding. In ICLR, 2016. arXiv: 1510.00149.

[10] Thomas Kipf. Implementation of Graph Convolutional Networks in Ten-
sorFlow: tkipf/gcn, August 2019. original-date: 2016-11-11T10:59:21Z.

[11] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs, stat], September
2016. arXiv: 1609.02907.

[12] Nan Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally. A detailed and flexible cycle-
accurate Network-on-Chip simulator. In 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 86–96, April 2013.

[13] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural
Networks, 20(1):61–80, January 2009.

[14] Petar Velikovi. Graph Attention Networks
(https://arxiv.org/abs/1710.10903): PetarV-/GAT, August 2019. original-
date: 2018-02-01T02:17:22Z.

[15] Petar Velikovi, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Li, and Yoshua Bengio. Graph Attention Networks.
arXiv:1710.10903 [cs, stat], October 2017. arXiv: 1710.10903.

[16] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A Comprehensive Survey on Graph Neural Net-
works. arXiv:1901.00596 [cs, stat], January 2019. arXiv: 1901.00596.

[17] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu,
Kang Chen, Christos Kozyrakis, and Xuehai Qian. GraphP: Reducing
Communication for PIM-Based Graph Processing with Efficient Data
Partition. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 544–557, Vienna, February 2018.
IEEE.

[18] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
and Maosong Sun. Graph Neural Networks: A Review of Methods
and Applications. arXiv:1812.08434 [cs, stat], December 2018. arXiv:
1812.08434.

