
In Proceedings of the Workshop on Complexity-Effective Design(WCED), June 2003

A Multi-Core Approach to Addressing the Energy-Complexity Problem in
Microprocessors

Rakesh Kumar Keith Farkas* Norman P Jouppi* Partha Ranganathan* Dean M. Tullsen

Department of Computer Science and Engineering
University of California, San Diego�

rakumar,tullsen � @cs.ucsd.edu

� HP Labs
1501 Page Mill Road
Palo Alto, CA 94304�

keith.farkas,norm.jouppi,partha.ranganathan � @hp.com

Abstract

This paper proposes single-ISA heterogeneous multi-
core architectures as a mechanism to reduce processor
power dissipation. It assumes a single chip containing a
diverse set of cores that target different performance levels
and consume different levels of power. During an applica-
tion’s execution, system software evaluates the resources re-
quired by an application for good performance and dynami-
cally chooses the core that can best meet these requirements
while minimizing energy consumption. It describes an ex-
ample architecture with five cores of varying performance
and complexity. Initial results show a more than three-fold
reduction in energy at a cost of only 18% performance.

1 Introduction

As processors continue to increase in performance and
speed, processor power consumption and heat dissipation
have become key challenges in the design of future high-
performance systems. For example, Pentium-class proces-
sors currently take well over 100W and processors in the
year 2015 are expected to take close to 300W [7]. Increased
power consumption and heat dissipation typically leads to
higher costs for thermal packaging, fans, electricity, and
even air conditioning. Higher-power systems can also have
a greater incidence of failures.

In this paper, we propose a single-ISA heterogeneous
multi-core architecture to reduce processor power dissipa-

tion. Prior chip-level multiprocessors (CMP) have been pro-
posed using multiple copies of the same core (i.e., homo-
geneous), or processors with co-processors that execute a
different instruction set. We propose that for many appli-
cations, core diversity is of higher value than uniformity,
offering much greater ability to adapt to the demands of the
application(s). We present a multi-core architecture where
all cores execute the same instruction set, but have different
capabilities and performance levels. At run time, system
software evaluates the resource requirements of an applica-
tion and chooses the core that can best meet these require-
ments while minimizing energy consumption.

The motivation for this proposal is that different appli-
cations have different resource requirements during their
execution. For example, some applications may have a
large amount of instruction-level parallelism (ILP), which
can be exploited by a core that can issue many instructions
per cycle (i.e., a wide-issue superscalar CPU). The same
core, however, might be wasted on an application with lit-
tle ILP, consuming significantly more power than a simpler
core that is better matched to the characteristics of the appli-
cation. Hence, it is might be possible to run an application
on the core with appropriate-complexity instead of running
on the core with highest complexity and yet achieve similar
levels of performance.

Previous work on power-related optimizations for pro-
cessor design can be broadly classified into two categories -
(1) work that uses voltage and frequency scaling of the pro-
cessor core to lower power [13, 21], (2) work that uses “gat-
ing” - the ability to turn on and off portions of the core - for
power management [8, 18, 14, 19, 12, 15, 11]. Our hetero-

geneous multi-core architecture does not preclude the use of
these techniques and can potentially address the drawbacks
of these techniques to provide much greater power savings.
For example, voltage and frequency scaling reduces the pa-
rameters of the entire core. While this reduces power, the
power reductions are uniform, across both the portions of
the core that are useful for this workload as well as the por-
tions of the core that are not. Furthermore, the power ben-
efits are fundamentally limited by the process technology
in which the processor is built. Similarly, gating-based ap-
proaches do not address the power consumed from driving
wires across the idle areas of the processor core.

One way to implement a heterogeneous multi-core archi-
tecture is to take a series of previously implemented proces-
sor cores, modify their interfaces, and combine them into
a single multiprocessor. This ensures complexity-effective
designs which can be relatively easily tested and validated.
Given the growth between generations of processors from
the same architectural family, the entire family can typi-
cally be incorporated on a die only slightly larger than that
required by the most advanced core. In addition, clock
frequencies of the older cores would scale with technol-
ogy, and would be much closer to that of the latest pro-
cessor technology than their original implementation clock
frequency. Then the primary criterion for selecting between
different cores would be the performance (e.g., IPC) of each
architecture and the resulting energy dissipation.

In this paper, we consider implications of this single-ISA
heterogeneous architecture, with particular attention to one
example architecture – it includes five representative cores
(three in-order cores and two out-of-order cores) from an
ordered complexity/performance continuum.

2 Architecture

This section gives an overview of a potential heteroge-
neous multi-core architecture and core-switching approach.

The architecture consists of a chip-level multiprocessor
with multiple, diverse processor cores. These cores all ex-
ecute the same instruction set, but include significantly dif-
ferent resources, and achieve different performance and en-
ergy efficiency on the same application. During an appli-
cation’s execution, the operating system software tries to
match the applications to the different cores so as to make
the best use of the available hardware while maximizing en-
ergy efficiency for a given performance requirement or goal.

2.1 Choice of cores.

Our heterogeneous multi-core architecture is based on
the hypothesis that the performance difference between the
cores varies across different workloads. In other words, the
“best” core (defined, for now, as some desired combination

of power and performance) for one application may not be
best for another. One application may benefit greatly from
wide issue and dynamic scheduling, another benefits from
neither. Thus, the latter gains nothing from the extra power
required for it to run on a high-performance processor. This
hypothesis motivates the inclusion of a diverse set of cores
on the die.

To provide an effective platform for a wide variety of ap-
plication execution characteristics, the cores on the hetero-
geneous multi-core processor should cover both a wide and
evenly spaced range of the complexity/performance design
space. The initial study considers a design that takes a se-
ries of previously implemented processor cores with slight
changes to their interface – this preserves one of the key
advantages of the CMP architecture, namely the effective
amortization of design and verification effort. For breadth,
we include both a single-threaded version of the EV8 (Al-
pha 21464), referred to as EV8-, and the MIPS R4700,
a processor targeted at very low-power applications. To
fill out the design space, we also include the EV4 (Alpha
21064), EV5 (Alpha 21164), and EV6 (Alpha 21264). Core
switching is greatly simplified if the cores can share a single
executable, so we assume a variant of the R4700 that exe-
cutes the Alpha ISA. Finally, we assume the five cores have
private L1 data and instruction caches and share a common
L2 cache, phase-lock loop circuitry, and pins.

We chose the cores of these off-the-shelf processors due
to the availability of real power and area data for these pro-
cessors, except for the EV8 where we use projected num-
bers [10, 16, 6, 5]. All these processors have 64-bit archi-
tectures.

Figure 1 shows the relative sizes of the cores used in
the study, assuming they are all implemented in a 0.10 mi-
cron technology (the methodology to obtain this figure is
described in the next section). It can be seen that the result-
ing core is only modestly (within 15%) larger than the EV8-
core by itself.

For this research, to simplify the initial analysis of this
new execution paradigm, we assume only one application
runs at a time on only one core. This design point could
either represent an environment targeted at a single applica-
tion at a time, or modelling policies that might be employed
when a multithreaded multi-core configuration lacks thread
parallelism. But because we assume a maximum of one
thread running, the multithreaded features of EV8 are not
needed. Hence, these are subtracted from the model, as dis-
cussed in Section 3. In addition, this assumption means that
we do not need more than one of any core type. Finally,
since only one core is active at a time, we implement cache
coherence by ensuring that dirty data is flushed from the
current core’s L1 data cache before execution is migrated to
another core.

2

EV8-

EV6

EV5

EV4

R47

00

Figure 1. Relative sizes of the cores used in
the study

This particular choice of architectures also gives a clear
ordering in both power dissipation and expected perfor-
mance. This allows the best coverage of the design space
for a given number of cores and simplifies the design of
core-switching algorithms.

2.2 Switching of workloads between cores.

The second hypothesis in our study is that different cores
have varying energy efficiencies for the same workload.
Typical programs go through phases with different execu-
tion characteristics – the best core during one phase may
not be best for the next phase. This observation motivates
the ability to dynamically switch cores in mid execution to
take full advantage of our heterogeneous architecture.

There is a cost to switching cores, so we must restrict the
granularity of switching. One method for doing this would
switch only at operating system timeslice intervals, when
execution is in the operating system, with user state already
saved to memory. If the OS decided a switch was in order,
it would trigger a cache flush to save all dirty cache data
to the shared L2, power up the new core, and signal the
new core to start at a predefined OS entry point. The new
core would then power down the old core and return from
the timer interrupt handler. The user state saved by the old
core would be loaded from memory into the new core at
that time, as a normal consequence of returning from the
operating system. Alternatively, we could switch workloads
to different cores at the granularity of the entire application,
possibly chosen statically. In this study, we consider both
these options.

In this work, we assume that unused cores are completely
powered down, rather than left idle. Thus, unused cores
suffer no static leakage or dynamic switching power. This
does, however, introduce a latency for powering a core back
up. We assume that a given processor core can be powered
up in approximately one thousand cycles of the 2.1GHz
clock. This assumption is based on the observation that

when we power down a processor core we do not power
down the phase-lock loop that generates the clock for the
core. Rather, in our multi-core architecture, the same phase-
lock loop generates the clocks for all cores. Consequently,
the power-up time of a core is determined by the time re-
quired for the power buses to charge and stabilize. In ad-
dition, to avoid injecting excessive noise on the power bus
bars of the multi-core processor, a staged power up would
likely be used. We estimate that such a power up could be
completed in roughly 1000 cycles, or 500ns.

3 Methodology

This section discusses the various methodological chal-
lenges of this research, including modeling the power, the
real estate, and the performance of the heterogeneous multi-
core architecture.

3.1 Modeling of CPU Cores

As discussed earlier, the cores we simulate are roughly
modelled after cores of R4700, EV4 (Alpha 21064), EV5
(Alpha 21164), EV6 (Alpha 21264) and EV8-. EV8- is a
hypothetical single-threaded version of EV8 (Alpha 21464).
The data on the resources for EV8 was based on predic-
tions made by Joel Emer [10] and Artur Klauser [16], con-
versations with people from the Alpha design team, and
other reported data [6, 5]. The data on the resources of the
other cores are based on published literature on these pro-
cessors [1, 2, 3, 4].

The multi-core processor is assumed to be implemented
in a 0.10 micron technology. The cores have private first-
level caches, and share an on-chip 3.5 MB 7-way set-
associative L2 cache. At 0.10 micron, this cache will oc-
cupy an area just under half the die-size of the Pentium 4.
All the Alpha cores (EV4,EV5,EV6,EV8-) are assumed to
run at 2.1GHz. This is the frequency at which an EV6 core
would run if its 600MHz, 0.35 micron implementation was
scaled to a 0.10 micron technology. All of the Alpha cores
were designed to run at high frequency, so we assume they
can all scale to this frequency (if not as designed, proces-
sors with similar characteristics certainly could). On the
other hand, the R4700 is not designed primarily for high
clock rate; thus, we assume it is clocked at 1 GHz. The
input voltage for all the cores is assumed to be 1.2V.

Table 1 summarizes the configurations that were mod-
elled for various cores. We did not faithfully model ev-
ery detail of each architecture, but we were most concerned
with modeling the approximate spaces each core covers in
our complexity/performance continuum. However, all ar-
chitectures are modelled as accurately as possible, given the
parameters in Table 1, on a highly detailed instruction-level
simulator.

3

Processor R4700 EV4 EV5 EV6 EV8-

Issue-width 1 2 4 6 (OOO) 8 (OOO)
I-Cache 16KB, 2-way 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way
D-Cache 16KB, 2-way 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way

Branch Pred. Static 2KB,1-bit 2K-gshare hybrid 2-level hybrid 2-level (2X EV6 size)
Number of MSHRs 1 2 4 8 16

Table 1. Configuration of the cores

As noted, our emphasis was on evenly covering the com-
plexity space rather than complete faithfulness to the orig-
inal designs. Specific details of the implication of this
emphasis include the followig. Associativity of the EV8-
caches is double the associativity of equally-sized EV6
caches to account for increased speculation due to higher
issue-width. EV8- uses a tournament predictor double the
size of the EV6 branch predictor. All the caches are as-
sumed to be non-blocking, but the number of MSHRs is
assumed to double with successive cores to adjust to in-
creasing issue width. All the out-of-order cores are as-
sumed to have big enough re-order buffers and large enough
load/store queues to ensure no conflicts for these structures.

The various miss penalties and L2-cache access laten-
cies for the simulated cores were determined using CACTI.
CACTI [29, 25] provides an integrated model of cache ac-
cess time, cycle time, area, aspect ratio, and power. To cal-
culate the penalties, we used CACTI to get access times and
then added one cycle each for L1-miss detection, going to
L2, and coming from L2. For calculating the L2 access
time, we assume that the L2 data and tag access are serial-
ized so that the data memories don’t have to be cycled on a
miss and only the required set is cycled on a hit. Memory
latency was determined to be 150ns.

3.2 Modeling Power

Table 2 shows our power and area estimates for the
cores. Power dissipation for all implemented cores is de-
rived from published numbers, forcing us to start with peak
power data obtained from datasheets and conference pub-
lications [1, 2, 3, 4, 16, 6]. Actual power dissipation will
vary with activity, which we do not model inside the cores
(but do at the L2 cache).While this basis ensures that our
power estimates are high, we believe that the typical power
for each core scales roughly with peak power. This gives us
an adequate yardstick to determine the initial feasibility of
this approach, which is the primary goal of this paper.

To derive the peak power dissipation in the core of a pro-
cessor from the published numbers, the power consumed in
the L2-caches and at the output pins of the processor must
be subtracted from the published value. Power consump-
tion in the L2 caches under peak load was determined using
CACTI, starting by finding the energy consumed per access
and dividing by the effective access time. Details on bitouts,
the extent of pipelining during accesses etc. were obtained

from datasheets (except for EV8-). For the EV8 L2, we as-
sumed 32 byte (288 bits including ECC) transfers on reads
and writes to the L1 cache. We also assumed the L2 cache
to be doubly pumped. The power dissipation at the output
pins was calculated using the formula: �����	��

������������� .

The values of V (bus voltage), f (effective bus frequency)
and C (load capacitance) were obtained from datasheets.
Effective bus frequency was calculated by dividing the peak
bandwidth of the data bus by the maximum number of data
output pins which are active per cycle. The address bus
was assumed to operate at the same effective frequency. For
processors like the EV4, the effective frequency of the bus
connecting to the BCache is different from the effective fre-
quency of the system bus, so power must be calculated sep-
arately for those buses. We assume the probability that a
bus line changes state was 0.5. For calculating the power
at the output pins of EV8, we used the projected values for
V and f. We assumed that half of the pins are input pins.
Also, we assume that pin capacitance scales as the square
root of the scaling factor. Due to reduced resources, we as-
sumed that the EV8- core consumes 80% of the calculated
EV8 core-power. This reduction is assumed primarily due
to smaller issue queues and register files. The power data
was then scaled to the 0.10 micron process. For scaling,
we assumed that power dissipation varies directly with fre-
quency, quadratically with input-voltage and is proportional
to feature-size.

The second column in Table 2 summarizes the power
consumed by the cores at 0.10 micron technology. As can
be seen from the table, the EV8- core consumes almost 200
times the power and 80 times the real estate of the R4700
core.

CACTI was also used to derive the energy per access of
the shared L2-cache, for use in our simulations. We also
estimated power dissipation at the output pins of the L2-
cache due to L2-misses. For this, we assumed 400 output
pins. We assumed a load capacitance of 50pF and a bus
voltage of 2.5V. Again, an activity factor of 0.5 for bit-line
transitions was assumed. We also ran some experiments
with a detailed model of off-chip memory access power, but
found that the level of off-chip activity is highly constant
across cores.

4

Core Core-power Core-area Power/area
(Watts) (�����) Watt/ �����

R4700 0.453 2.80 0.162
EV4 4.970 2.87 1.732
EV5 9.827 5.06 1.942
EV6 17.801 24.5 0.726
EV8- 92.880 236 0.393

Table 2. Peak Power and area statistics of the
cores

Program Description
ammp Computational Chemistry
applu Parabolic/Elliptic Partial Differential Equations
apsi Meteorology:Pollutant Distribution
art Image Recognition/Neural Networks
bzip2 Compression
crafty Game Playing:Chess
eon Computer Visualization
equake Seismic Wave Propagation Simulation
fma3d Finite-element Crash Simulation
gzip Compression
mcf Combinatorial Optimization
twolf Place and Route Simulator
vortex Object-oriented Database
wupwise Physics/Quantum Chromodynamics

Table 3. Benchmarks simulated.

3.3 Estimating Chip Area

Table 2 also summarizes the area occupied by the cores
at 0.10 micron (also shown in Figure 1). The area of the
cores (except EV8-) is derived from published photos of the
dies after subtracting the area occupied by I/O pads, inter-
connection wires, BIU (bus-interface unit), L2 cache, and
control logic. Area of the L2 cache of the multi-core pro-
cessor is estimated using CACTI.

The die size of EV8 was predicted to be 400 ! #" [22].
To determine the core size of EV8-, we subtract out the es-
timated area of the L2 cache (using CACTI). We also ac-
count for reduction in the size of register files, instruction
queues, reorder buffer, and renaming tables to account for
the single-threaded EV8-. We used detailed models of the
register bit equivalents (rbe) [20] for each structure at the
original and reduced sizes. The sizes of the original and
reduced instruction queue sizes were estimated from exam-
ination of MIPS R10000 and HP PA-8000 data [9, 17], as-
suming that the area grows more than linear with respect to
the number of entries ($&%' ()$&*,+.-,(�/
021 3). The area data is
then scaled for the 0.10 micron process.

3.4 Modeling Performance

Table 3 summarizes the benchmarks used. All 14 are
chosen from the SPEC2000 benchmark-suite, including 7
from SPECint and 7 from SPECfp.

Benchmarks are simulated using SMTSIM, a cycle-
accurate, execution-driven simulator that simulates an out-
of-order, simultaneous multithreading processor [26, 27].
SMTSIM executes unmodified, statically linked Alpha bi-
naries. The simulator was modified to simulate a multi-core
processor comprising five heterogeneous cores sharing an
on-chip L2 cache and the memory subsytem. Because the
R4700 does not execute Alpha binaries, what we are model-
ing is an R4700-like architecture targeted to the Alpha ISA.

In all simulations in this research we assume a single
thread of execution running on one core at a time. Switch-
ing execution between cores involves flushing the pipeline
of the “active” core and writing back all its dirty L1 cache
lines to the L2 cache. The next instruction is then fetched
into the pipeline of the new core. Both the execution time
and energy of this overhead, as well as the startup effects
on the new core, is accounted for in our simulations of the
dynamic switching heuristics in Section 4.

Programs are fast-forwarded for 2 billion committed in-
structions and simulated for 1 billion committed instruc-
tions, starting with a cold cache. All benchmarks are sim-
ulated using ref inputs. In experiments to understand ap-
plication phase behavior, data was collected after every 1
million committed instructions.

4 Initial Results

Figure 2 shows results for applu. Performance and
power are modeled for each processor, with the ratio
(46587 ")9�:�; *,*) (essentially, the inverse of energy-delay
product) shown on the Y axis. The bold line shows the core
at each interval which minimizes the energy-delay product
over that interval, with the constraint that we never choose a
core that sacrifices more than 50% performance relative to
EV8- over an interval. The line is drawn based on an offline
analysis where locally-optimal decisions are made for each
interval. Note that this does not represent an upper-bound
on the savings because globally-optimal decisions might be
very different. We could not find the upper-bound because
of the quadratic integer-linear-programming nature of the
problem. In this figure, four different cores are used for
some interval. Compared to a single-core architecture (e.g.,
one that only contained the EV8- core), this configuration
could ideally reduce the energy-delay product by 73.5% (a
nearly 4X improvement in 4<587 "=9
:). This comes from a
combination of a 15% performance loss and a 77.7% energy
savings (that’s a five-fold reduction in energy). The coarse
granularity of switching means that the cost of switching
has less than 1% effect on the overall performance.

Table 4 shows the results for all the benchmarks assum-
ing perfect knowledge(locally-optimal) on when to context
switch. The results are shown relative to EV8-. As can
be seen, the average reduction in energy-delay is 65%; the

5

0

0.5

1

1.5

2

2.5

3

1
 167
 333
 499
 665
 831
 997

Committed instructions(in millions)

IPS
^2

/W

 R4700

EV4

EV5

EV6

EV8-

Best-path

applu
Figure 2. Oracle switching for best energy-delay – applu

average energy reductions are 70% and the average per-
formance degradation is 18%. All but one of the fourteen
benchmarks have fairly significant (51% to 98%) reductions
in energy-delay. The corresponding reductions in perfor-
mance ranges from 1% to 45%. Switching activity and the
usage of the cores varies. All the cores get used.

Relaxing the (50%) performance constraint would allow
even higher energy-delay savings, but would make greater
performance sacrifices to do so. More conservative con-
straints are also possible, of course. It is trivial to adapt
these techniques to optimize other metrics besides energy-
delay product (depending on the actual priorities of the ar-
chitecture or application), and we have experimented with
some of those, including ><?8@BA=C�D�E6F,F . It should be noted
that the hardware architecture need not change for varying
power/performance tradeoffs . It is only necessary for the
switching algorithm to change. Also, though EV6 core is
the one most used in the results in table 4, our experiments
indicate that the choice of cores used is dependent on the ob-
jective function being optimized. For example, optimizing
for energy instead of energy-delay led to the use of EV8-,
EV6 and R4700 cores.

5 Related Work

There has been a large body of work on power-related
optimizations for processor design. These can be broadly
classified into two categories - (1) work that uses voltage
and frequency scaling of the processor core to lower power,
(2) work that uses ”gating” - the ability to turn on and off
portions of the core - for power management.

Voltage and frequency scaling reduces the parameters
of the entire core [13, 21]. While this reduces power, the
power reductions are uniform - across both the portions of
the core that are useful for this workload as well as the por-
tions of the core that are not. For example, a hypothetical
processor that spends 30% of its power on a 1MB branch
predictor that is not used would still continue to spend 30%

of its power in the branch predictor even at a lower power
setting with voltage and frequency scaling. Furthermore,
voltage and frequency scaling is fundamentally limited by
the process technology in which the processor is built. Het-
erogeneous multi-core designs address both these deficien-
cies.

Gating-based power optimizations [8, 18, 14, 19, 12, 15,
11] provide the option to turn off (gate) portions of the pro-
cessor core that are not useful to a workload. For example,
half of the banks in the branch predictor could be turned off
in the example above. However, this kind of gating does not
address the power consumption in driving wires across the
inactive areas of the processor core. The importance of this
problem is indicated by the fact that in most processors, the
power of the processor core is, to a first-order approxima-
tion, proportional to the area of the core. Hence, gating is
not a complete solution to this problem.

The architecture proposed in this paper addresses the
drawbacks of gating by effectively designing multiple pro-
cessor cores each optimized for a particular energy effi-
ciency for a particular performance. Instead of having
widely distributed, but gated, resources throughout the chip,
we allow code using few resources to execute in an environ-
ment where those few resources are highly localized.

Overall, having heterogeneous processor cores provides
potentially greater power savings compared to previous ap-
proaches and greater flexibility and scalability of architec-
ture design. Moreover, these previous approaches can be
used in a multi-core processor to greater advantage.

Several other studies have also identified the differences
in the behavior characteristics across different applications
and different phases between applications [23, 24, 28].

6 Conclusions and Future Work

This paper seeks to gain some initial insights into the
energy benefits available for a new architecture, that of a
heterogeneous set of cores on a single multi-core die, shar-

6

Benchmark Total % of instructions per core Energy-delay Energy Perf.
switches R4700 EV4 EV5 EV6 EV8- Savings(%) Savings(%) Loss (%)

ammp 8 47.7 0.2 0.1 52 0 97.9 98.1 8.5
applu 27 0 2.2 0.1 94.5 3.2 73.5 77.5 14.9
apsi 0 0 0 0 100 0 66.4 74.6 24.4
art 387 79.4 1.9 0 18.5 0.1 93.4 96.4 45.4
equake 2 0 0.6 0 99.4 0 68.5 75.8 23.1
fma3d 0 0 0 0 100 0 58.0 71.6 32.3
wupwise 0 0 0 0 100 0 71.1 76.5 18.5
bzip 1 0 0 0 92.2 7.8 50.6 51.1 1.1
crafty 161 0 0 0 62.7 37.3 54.0 59.6 12.1
eon 0 0 0 0 100 0 76.7 78.8 9.4
gzip 0 0 0 0 100 0 73.1 77.3 15.5
mcf 0 0 0 0 100 0 74.6 77.9 13.0
twolf 1 0 0 0 0.2 99.8 0.11 0.29 0.13
vortex 96 0 0 0 94.9 5.1 58.2 69.7 27.6
Average 1(median) 9.1% 0.3% 0.0% 79.7% 10.9% 65.4% 70.4% 18.2%

Table 4. Summary for dynamic oracle switching for energy-delay

ing the same ISA. To do this, we constrained the problem
to a single application switching among cores to optimize
some function of energy and performance.

We show that a sample heterogeneous multi-core design
with five cores capable of executing the Alpha ISA has the
potential to increase energy efficiency (defined as energy-
delay product, in this case) by as much as 98%, and averag-
ing over 65%, without dramatic losses in performance.

This work demonstrates that there can be great advantage
to diversity within an on-chip multiprocessor, allowing that
architecture to adapt to the workload in ways that a uniform
CMP cannot. A multi-core heterogeneous architecture can
support a range of execution characteristics not possible in
an adaptable single-core processor, even one that employs
aggressive gating and frequency scaling.

Ongoing and future work in this area will examine new
switching heuristics for threads on a heterogeneous multi-
core die, possibly incorporating both local and long-term
views of performance and energy. It will look at multiple
threads on a single die, which may in fact contain multi-
threaded processors as well as multiple copies of the sim-
pler cores. It will examine both the performance and energy
impacts of such an architecture. Further investigation also
needs to be done into the most effective selection of proces-
sor cores onto a heteregeneous multi-core architecture as
well as changing/specializing the cores for enhancing sav-
ings and/or versatilty.

References

[1] 79R4700 data sheet.
[2] Alpha 21064 and Alpha 21064A Hardware Reference Man-

ual.
[3] Alpha 21164 Microprocessor:Hardware Reference Manual.
[4] Alpha 21264/EV6 Microprocessor:Hardware Reference

Manual.
[5] EE times.

[6] Microprocessor Report.
[7] International technology roadmap for semiconductors.

2001.
[8] D. H. Albonesi. Selective cache-ways: On demand cache

resource allocation. In IEEE/ACM International Symposium
on Microarchitecture (MICRO-32), 1999.

[9] A. M. Despain and J.-L. Gaudiot. HIDISC: A decoupled ar-
chitecture for applications in data intensive computing. May
2001.

[10] J. Emer. EV8:the post-ultimate alpha. In PACT Keynote Ad-
dress(http://research.ac.upc.es/pact01/keynotes/emer.pdf,
2001.

[11] D. Folegnani and A. Gonzalez. Reducing power consump-
tion of the issue logic. In Proceedings of the Workshop on
Complexity-Effective Design, June 2000.

[12] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation
in workloads with externally specified rates to reduce power
consumption. In Workshop on Complexity Effective Design.,
June 2000.

[13] K. Govil, E. Chan, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting of a low-power cpu. In
1st Int’l Conference on Mobile Computing and Networking,
Nov. 1995.

[14] D. Grunwald, A. Klauser, S. Manne, and A. Pleskun. Con-
fidence estimation for speculation control. In 25th Annual
International Symposium on Computer Architecture, June
1998.

[15] A. Iyer and D. Marculescu. Power aware microarchitecture
resource scaling. In Proceedings of IEEE Design, Automa-
tion and Test in Europe Confeence(DATE), 2001.

[16] A. Klauser. Trends in high-performance microprocessor de-
sign. In Telematik-2001, 2001.

[17] A. Kumar. The HP PA-8000 RISC CPU. In Hot Chips VIII,
Aug. 1996.

[18] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
Speculation control for energy reduction. In 25th Annual
International Symposium on Computer Architecture, June
1998.

[19] R. Maro, Y. Bai, and R. Bahar. Dynamically reconfiguring
processor resources to reduce power consumption in high-
performance processors. In PACS, 2000.

7

[20] J. M. Mulder, N. T. Quach, and M. J. Flynn. An area model
for on-chip memories and its applications. In IEEE Journal
of Solid State Circuits, Feb. 1991.

[21] T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In Pro-
ceedings of 1998 International Symposium on Low Power
Electronics and Design, Aug. 1998.

[22] J. M. Rabaey. The quest for ultra-low energy computa-
tion opportunities for architectures exploiting low-current
devices. 2000.

[23] T. Sherwood and B. Calder. Time varying behavior of pro-
grams. In UC San Diego Technical Report UCSD-CS-99-
630, Aug. 1999.

[24] T. Sherwood, E. Perelman, G. Hammerley, and B. Calder.
Automatically characterizing large-scale program behavior.
In Proceedings of the International Conference on 10th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Oct. 2002.

[25] P. Shivakumar and N. Jouppi. CACTI 3.0: An integrated
cache timing, power and area model. In Technical Report
2001/2, Compaq Computer Corporation, Aug. 2001.

[26] D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreading processor. In 22nd Annual Computer Measure-
ment Group Conference, Dec. 1996.

[27] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In 22nd Annual
International Symposium on Computer Architecture, June
1995.

[28] D. Wall. Limits of instruction-level parallelism. In Fourth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 176–
188, Apr. 1991.

[29] S. Wilton and N. Jouppi. CACTI: an enhanced cache ac-
cess and cycle time model. In IEEE Journal of Solid State
Circuits, Vol 31, No. 5, May 1996.

8

