
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Holistic Design for Multi-core Architectures

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Rakesh Kumar

Committee in charge:

Professor Dean Tullsen, Chair
Professor Brad Calder
Professor Fred Chong
Professor Rajesh Gupta
Dr. Norman P. Jouppi
Professor Andrew Kahng

2006

Copyright

Rakesh Kumar, 2006

All rights reserved.

The dissertation of Rakesh Kumar is approved, and it is

acceptable in quality and form for publication on micro-

film:

Chair

University of California, San Diego

2006

iii

DEDICATIONS

This dissertation is dedicated to friends, family, labmates, and mentors

– the ones who taught me, indulged me, loved me, challenged me, and laughed

with me, while I was also busy working on my thesis.

To Professor Dean Tullsen for teaching me the values of humility, kind-

ness,and caring while trying to teach me football and computer architecture. For

always encouraging me to do the right thing. For always letting me be myself.

For always believing in me. For always challenging me to dream big. For all his

wisdom. And for being an adviser in the truest sense, and more.

To Professor Brad Calder. For always caring about me. For being an

inspiration. For his trust. For making me believe in myself. For his lies about

me getting better at system administration and foosball even though I never did.

To Dr Partha Ranganathan. For always being there for me when I would

get down on myself. And that happened often. For the long discussions on life,

work, and happiness. For always being willing to listen. For all his infectious

optimism, enthusiasm, and energy.

To Dr. Norman Jouppi. For his wisdom. For his humility. For his

boundless energy and desire to teach. For always wanting me to get better. Most

importantly, for getting my jokes and laughing even at the bad ones.

To Drs. Andrew Kahng and Rajesh Gupta for the always constructive

feedback and discussions, and for holding high standards for excellence. To Dr.

Fred Chong for his invaluable comments. To Drs. Ravi Nair, Victor Zyuban, and

Keith Farkas for being excellent mentors.

To my labmates for the memories and the friendships. To Jeremy for

always listening to my rants, and for the countless hours spent discussing with

me the ‘ ‘what are the heck are we doing” question. To Jeff for teaching me much

of what I know about computer architecture and America. To Satish for his sense

iv

of balance and his ever willingness to be my sounding board. To Erez for always

helping me with my perspective on life. To John, Eric, and Jamison for being

my mentors in so many ways. To Wei for his enthusiasm. To Mike and Weifeng

for their sincerity. To Jack for his sense of humor. To Matt for tennis and the

beautiful Easter party. To Shubhro for being a great roommate, labmate, and

friend. To Ganesh for his infectious laughter. And to so many other past and

present members of the lab for shaping it into what it is.

To my friends who helped me keep my sanity outside work. To Puneet,

Satya, Sagnik, Sharma, Swamy, Sameer, and so many others. For the many

hours of fun. For sharing sorrow and laughter. For their invaluable friendships.

For letting me talk them into going out for a lunch, dinner, or a movie with me

always. Even when they wanted to cook at home or had work to do.

Finally, to my family. For their love, support, encouragement, guidance,

and checks. For their character. For my character. For laughing with me. For

crying with me. For crying for me. For bliss. For happiness. They are the ones

responsible for everything that I am and everything that I want to be. And to

them I dedicate this dissertation.

v

“Karmanye va dhikarasthe, Ma phaleshu kadachana

Karma Phala heturbhur ma te sangastva karmani”

vi

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . vi

Table of Contents . vii

List of Figures . xi

List of Tables . xiv

Acknowledgments . xv

Vita and Publications . xvii

Abstract . xx

I Introduction . 1
A. Design Methodology for Multi-cores 2

1. Holistic Design . 3
B. Overview of Dissertation . 7

II Background . 9
A. Why Multi-cores . 9
B. Chronicling Multi-core Efforts . 11

III Holistic Design for Adaptability: Single-ISA Heterogeneous Multi-core
Architectures . 17
A. Inefficiency due to Workload Diversity 17
B. Single-ISA Heterogeneous Multi-core Architectures 20
C. Evaluation Methodology . 24
D. Scheduling for Throughput: Analysis and Results 30
E. Acknowledgment . 44

IV Holistic Design for Adaptability: Power Advantages of Heterogeneity . 45
A. Discussion of Core Switching . 46
B. Choice of cores . 47
C. Switching applications between cores 49
D. Evaluation Methodology . 50

1. Modeling of CPU Cores . 51

vii

2. Modeling Power . 53
3. Estimating Chip Area . 57
4. Modeling Performance . 57

E. Scheduling for Power: Analysis and Results 59
1. Variation in Core Performance and Power 59
2. Oracle Heuristics for Dynamic Core Selection 62
3. Static Core Selection . 64
4. Realistic Dynamic Switching Heuristics 66
5. Practical heterogeneous architectures 69

F. Summary . 70
G. Acknowledgment . 70

V Holistic Design for Adaptability: Designing Heterogeneous Multi-cores
From the Ground Up . 71
A. Overview of Related Proposals . 71
B. Benefits of Ground-up Design . 75
C. From Workloads to Multi-core Design 77
D. Customizing Cores to Workloads 79
E. Methodology . 81

1. Modeling of CPU Cores . 81
2. Modeling Power and Area . 82
3. Modeling Performance . 84

F. Analysis and Results . 88
1. Fixed Area Budget . 88
2. Fixed Power Budget . 95
3. Impact of Non-monotonic Design 97
4. Varying Thread-Level Parallelism 97
5. Dynamic Switching . 98
6. Efficient Search Techniques . 99

G. Validating Results . 101
H. Acknowledgment . 102

VI Obviating Overprovisioning: Conjoined-core Multiprocessing Architec-
tures . 107
A. Related Work . 109
B. Baseline Architecture . 110

1. Baseline processor model . 111
2. Die floorplan and area model 112

C. Conjoined-core Architectures . 114
1. ICache sharing . 116
2. DCache sharing . 117

viii

3. Crossbar sharing . 117
4. FPU sharing . 119
5. Summary of sharing . 120

D. Experimental Methodology . 120
E. Simple Sharing . 122

1. Sharing the ICache . 123
2. DCache sharing . 125
3. FPU sharing . 126
4. Crossbar sharing . 126
5. Simple sharing summary . 127

F. Intelligent Sharing of Resources 128
1. ICache sharing . 128
2. DCache sharing . 130
3. Symbiotic assignment of threads 132

G. A Unified Conjoined-Core Architecture 132
H. Acknowledgment . 134

VII The Interconnect Problem and the Need for Co-design 140
A. Related Work . 141
B. Interconnection Mechanisms . 142

1. Shared Bus Fabric . 142
2. P2P Links . 147
3. Crossbar Interconnection System 147

C. Modeling Area, Power, and Latency 149
1. Wiring Area Overhead . 149
2. Logic Area Overhead . 150
3. Power . 151
4. Latency . 152

D. Modeling Multi-core Architectures 152
1. Workload . 154

E. Shared Bus Fabric: Overheads and Design Issues 155
1. Area . 156
2. Power . 158
3. Performance . 158

F. Shared Caches and the Crossbar 161
1. Area and power overhead . 161
2. Performance . 163

G. Scaling with Technological Parameters 165
H. An Example Holistic Approach to Interconnection 166
I. Acknowledgment . 167

ix

VIIISummary and Future Work . 174
A. Holistic Design for Adaptability 175
B. Obviating Overprovisioning in Multi-cores 178
C. Interconnection-aware Co-design 179
D. Future Work . 180

Bibliography . 183

x

LIST OF FIGURES

III.1 Performance of applu over time on Alpha cores 19

III.2 Exploring the potential of heterogeneity: Comparing the through-
put of six-core homogeneous and heterogeneous architectures for
different area budgets . 23

III.3 Benefits from heterogeneity - static scheduling for inter-thread
diversity . 31

III.4 Three strategies for evaluating the performance an application
will realize on a different core 35

III.5 Sensitivity to sampling frequency for time-based trigger mecha-
nisms using the sample-avg core-sampling strategy 38

III.6 Comparison of event-based triggers using the sample-avg core-
sampling strategy . 40

III.7 Limiting response-time for various loads on comparable budget
homogeneous and heterogeneous architectures 43

IV.1 Relative sizes of the Alpha cores when implemented in 0.10 mi-
cron technology . 48

IV.2 (a) Performance of applu on the four cores (b) Oracle switching
for energy (c) Oracle switching for energy-delay product. 60

IV.3 applu energy efficiency. IPS2/W varies inversely with energy-
delay product . 61

IV.4 Results for realistic switching heuristics for heterogeneous multi-
cores - the last one is a constraint-less dynamic oracle 68

V.1 Area and Power of the cores . 85

V.2 Throughput for all-same (top) and all-different (bottom) work-
loads, area budget=40mm2 . 89

V.3 Throughput for all-different workloads for an area budget of
(left to right) 20mm2, 30mm2, 50mm2, and 60mm2. 91

V.4 Throughput for all-same (left) and all-different (right) work-
loads, power budget=30W . 96

xi

V.5 Throughput for all-different workloads for a power budget of
(left to right) 20W, 40W, 50W, and 60W. 103

V.6 Benefits due to non-monotonicity of cores;area budget=40mm2,power
budget =30W . 104

V.7 Throughput for all-same and all-different workloads for different
TLPs, area budget=40mm2, power budget=30W 105

V.8 Benefits due to dynamic switching; area budget = 40mm2,power
budget=30W . 106

V.9 Comparing the results using assumed methodology against full
simulation results: area budget = 40mm2, power budget = 30W 106

VI.1 Baseline die floorplan for studying conjoining, with L2 cache
banks in the middle of the cluster, and processor cores (including
L1 caches) distributed around the outside 113

VI.2 (a)Floorplan of the original core (b)Layout of a conjoined-core
pair, both showing FPU routing. Routing and register files are
schematic and not drawn to scale 135

VI.3 A die floorplan with crossbar sharing 136

VI.4 Impact of ICache sharing for various threading levels 136

VI.5 ICache sharing when no extra latency overhead is assumed,
cache structure bandwidth is not doubled, and cache is doubly
banked . 137

VI.6 Impact of Dcache sharing for various threading levels 137

VI.7 DCache sharing when no extra latency overhead is assumed . . 137

VI.8 Impact of FPU sharing for various threading levels 138

VI.9 Impact of private FP divide sub-units 138

VI.10 Reducing crossbar area through width reduction and port sharing138

VI.11 ICache assertive access results when the original structure band-
width is not doubled . 139

VI.12 Fetch-combining results . 139

xii

VI.13 Effect of assertive access and static assignment 139

VII.1 The assumed shared bus fabric for our interconnection study . 143

VII.2 A typical crossbar . 148

VII.3 Floorplans for 4, 8 and 16 core processors 168

VII.4 Area overhead for shared bus fabric. 169

VII.5 Power overhead for shared bus fabric 169

VII.6 Performance overhead due to shared bus fabric. 170

VII.7 Trading off interconnection bandwidth with area. 170

VII.8 Area overhead for cache sharing – results for crossbar routed
over L2 assume uniform cache density. 170

VII.9 Power overhead for cache sharing (the three bars, left to right,
correspond to 2-way, 4-way and full sharing). 171

VII.10 Evaluating cache sharing for a fixed cache size for different cross-
bar implementations – no area overhead is assumed 171

VII.11 Evaluating cache sharing for a fixed die area – area overhead
taken into account . 172

VII.12 Scaling of interconnection overhead with pipelining and technology172

VII.13 Hierarchical approach (splitting SBFs) 173

VII.14 Split vs Monolithic SBF . 173

xiii

LIST OF TABLES

III.1 Configuration and area of the EV4 and EV6 cores. 26

III.2 Benchmarks simulated for evaluating heterogeneous multi-cores
for throughput . 28

IV.1 Configuration of the cores used for power evaluation of hetero-
geneous multi-cores . 52

IV.2 Power and area statistics of the Alpha cores 56

IV.3 Benchmarks simulated for power evaluation of heterogeneous
multi-cores . 58

IV.4 Summary for dynamic oracle switching for energy on heteroge-
neous multi-cores . 65

IV.5 Summary for dynamic oracle switching for energy-delay on het-
erogeneous multi-cores . 65

IV.6 Oracle heuristic for static core selection on heterogeneous multi-
cores – energy metric. Rightmost two columns are for dynamic
selection . 66

V.1 Various Parameters and their possible values for configuration
of the cores . 82

V.2 Area and power estimation methodology and relevant assump-
tions for various hardware structures. Renaming for OOO cores
is assumed to be done using RAM tables. IW refers to issue-
width, WP to a write-port, and RP to a read-port. 83

V.3 Derived Area and Power Estimates for Processor Components . 84

V.4 Benchmarks used for design space exploration of heterogeneous
multi-cores . 86

VI.1 Simulated Baseline Processor for studying Conjoining 111

VI.2 Benchmarks simulated for evaluating conjoining 121

VI.3 Results with multiple sharings. 133

VII.1 Design parameters for wires in different metal planes 149

xiv

VII.2 Interconnection-related Logic overhead 158

xv

ACKNOWLEDGEMENTS

The text of Chapter III is in part a reprint of the material as it appears

in the proceedings of the Thirty-first International Symposium on Computer

Architecture (pp64-75, June 2004). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed the

research which forms the basis for Chapter III.

The text of Chapter IV is in part a reprint of the material as it appears

in the proceedings of the Thirty-sixth International Symposium on Microarchi-

tecture (pp81-92, December 2003). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed the

research which forms the basis for Chapter IV.

The text of Chapter V is in part a reprint of the material as it ap-

pears in the proceedings of the Fifteenth International Conference on Parallel

Architectures and Compilation Techniques (September 2006). The dissertation

author was the primary researcher and author and the co-authors involved in the

submission directed the research which forms the basis for Chapter V.

The text of Chapter VI is in part a reprint of the material as it appears

in the proceedings of the Thirty-seventh International Symposium on Microarchi-

tecture (pp195-206, December 2004). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed the

research which forms the basis for Chapter VI.

The text of Chapter VII is in part a reprint of the material as it appears

in the proceedings of the Thirty-second International Symposium on Computer

Architecture (pp408-419, June 2005). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed,

supervised, and assisted the research which forms the basis for Chapter VII.

xvi

VITA

1981 Born, Pusa, Bihar (INDIA)

1997 High School Certificate
Pusa, Bihar (INDIA)

2001 BTech. in Computer Science & Engineering
Indian Institute of Technology (IIT), Kharagpur

2002 Internship,
Hewlett-Packard Labs, WRL Group,
Palo Alto, California

2004 Internship,
IBM TJ Watson Research Center,
Yorktown Heights, New York

2006 Doctor of Philosophy
University of California, San Diego

PUBLICATIONS

David Sheldon, Rakesh Kumar, Frank Vahid, Dean Tullsen, and Roman Ly-
secky. “Conjoining Soft-Core FPGA Processors”. In International Conference on
Computer-Aided Design (ICCAD). November, 2006.

David Sheldon, Rakesh Kumar, Roman Lysecky, Frank Vahid, and Dean Tullsen.
“Application-Specific Customization of Parameterized FPGA Soft-Core Proces-
sors”. In International Conference on Computer-Aided Design (ICCAD). Novem-
ber, 2006.

Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. “Core Architecture Op-
timization for Heterogeneous Chip Multiprocessors”. In 15th International Sym-
posium on Parallel Architecture and Compilation Techniques (PACT). Septem-
ber, 2006.

Matt Devuyst, Rakesh Kumar, and Dean Tullsen. “Scheduling for Energy and
Performance for a CMP of SMT Processors”. In International Parallel & Dis-
tributed Processing Symposium (IPDPS), April, 2006.

Rakesh Kumar, Dean Tullsen, Norman Jouppi, and Parthasarathy Ranganathan.
“Heterogeneous Chip Multiprocessors”. IEEE Computer. November 2005.

xvii

Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. “Interconnections in Multi-
core Architectures: Understanding Mechanisms, Overheads and Scaling”. In the
32nd International Symposium on Computer Architecture, ISCA-32, June, 2005.

Yannakis Sazeidis, Rakesh Kumar, Dean Tullsen, and Theophanis Konstantinou.
“The Danger of Interval-Based Power-Efficiency Metrics: When Worst is Best”.
Computer Architecture Letters, Volume 4, January 2005.

Rakesh Kumar, Norman Jouppi, and Dean Tullsen. “Conjoined-core Chip Multi-
processing”. In the 37th International Symposium on Microarchitecture, MICRO-
37, December, 2004.

Eric Tune, Rakesh Kumar, Dean Tullsen, Brad Calder “Balanced Multithreading:
Increasing Throughput via a Low Cost Multithreading Hierarchy”. In the 37th
International Symposium on Microarchitecture, MICRO-37, December, 2004.

Rakesh Kumar, Dean Tullsen, Parthasarathy Ranganathan, Norman Jouppi, and
Keith Farkas. “Single-ISA Heterogeneous Multi-core Architectures for Multi-
threaded Workload Performance”. In the 31st International Symposium on Com-
puter Architecture, ISCA-31, June, 2004.

Rakesh Kumar, Keith Farkas, Norman Jouppi, Parthasarathy Ranganathan, and
Dean Tullsen. “Single-ISA Heterogeneous Multi-Core Architectures: The Poten-
tial for Processor Power Reduction”. In the 36th International Symposium on
Microarchitecture , MICRO-36, December, 2003.

Rakesh Kumar, Keith Farkas, Norman Jouppi, Parthasarathy Ranganathan, and
Dean Tullsen. “A Multi-Core Approach to Addressing the Energy-Complexity
Problem in Microprocessors”. Workshop on Complexity-Effective Design(WCED),
June 2003.

Rakesh Kumar, Keith Farkas, Norman Jouppi, Parthasarathy Ranganathan, and
Dean Tullsen. “Processor Power Reduction Via Single-ISA Heterogeneous Multi-
Core Architectures”. Computer Architecture Letters, Volume 2, April 2003.

Rakesh Kumar and Dean Tullsen. “Compiling for Instruction Cache Performance
on a Multithreaded Architecture”. In the 35th International Symposium on Mi-
croarchitecture, MICRO-35, November, 2002.

V. Ramakrishna, Rakesh Kumar, and Anupam Basu. “Switching Activity Min-
imization by Efficient Instruction Set Architecture Design”. In the 45th IEEE
International Midwest Symposium on Circuits and Systems, MWSCAS2002, Au-
gust, 2002.

Rakesh Kumar, Tushar Kanti Patra, and Anupam Basu. “Software Energy Opti-
mization for Preemptive Realtime Systems”. In the 4th International Symposium
on High-Performance Computing, ISHPC-IV, May, 2002.

xviii

Rakesh Kumar and Sudeshna Sarkar. “Three-staged Refinement Model for In-
formation Retrieval with Application to Newspaper Articles and Online Docu-
ments”. In International Symposium on Artificial Intelligence, ISAI-2001, De-
cember, 2001.

Tusharkanti Patra, Rakesh Kumar, and Anupam Basu. “Cache Optimization for
Minimizing Software energy in Embedded Systems”. In International Conference
on Communications, Computers and Devices, ICCCD, December, 2000.

Rakesh Kumar and D. Dutta Majumdar. “A Multi-processing Database Model
for Efficient Storage and Retrieval of Medical Images”. Journal of Computer
Science & Informatics, Volume30, No 3, page 31-38.

Rakesh Kumar and D.Dutta Majumdar. “A Multi-staged Database Model for

Efficient Storage and Retrieval of Medical Images”. In All India Seminar on In-
formation Technology organized by Institution of Engineers (India),March, 2000.

xix

ABSTRACT OF THE DISSERTATION

Holistic Design for Multi-core Architectures

by

Rakesh Kumar

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2006

Professor Dean Tullsen, Chair

Increasing design complexity and diminishing marginal utility of mono-

lithic processor designs has resulted in integration of multiple loosely-coupled

processing cores on the same die. However, fundamental questions remain about

the right form, implementation, and methodology for multi-core designs. This

thesis addresses these questions.

A popular methodology for designing a multi-core architecture is to

replicate an off-the-shelf core design multiple times, and then connect the cores

together using an interconnect mechanism. However, this methodology is “multi-

core oblivious” as subsystems are designed/optimized unaware of the overall chip-

multiprocessing system they would become parts of. This thesis demonstrates

that this methodology is very inefficient in terms of area/power, and recommends

a holistic approach where the subsystems are designed from the ground up as

different components of a full system.

Inefficiency in “multi-core oblivious” multi-core designs comes at differ-

ent levels. Having multiple replicated cores results in an inability to adapt to the

demands of execution workloads, and results in either underutilization or overuti-

lization of processor resources. This thesis proposes single-ISA (instruction-set

architecture) heterogeneous multi-core architectures where the die hosts cores of

xx

varying power/performance characteristics, but all capable of running the same

ISA. Such a processor can result in significant power savings and performance

improvements if the applications are mapped to cores judiciously. The thesis also

presents holistic design methodologies for such architectures.

Another source of inefficiency is blind replication of over-provisioned

hardware structures. To that effect, the thesis proposes conjoined-core chip mul-

tiprocessing where the adjacent cores of a multi-core architecture share some

resources. The thesis shows that this can result in significant area savings with-

out much performance degradation. The thesis also proposes novel optimizations

for minimizing the already small degradation.

Yet another source of inefficiency is the interconnection. This thesis

shows that the interconnection overheads can be very significant for a “multi-

core oblivious”” multi-core design – especially as the number of cores increases

and the pipelines get deeper. The thesis demonstrates the need to co-design the

cores, the memory and the interconnection to obviate the inefficiency problem,

and also makes several suggestions regarding co-design.

xxi

I

Introduction

The processor industry has seen a tremendous growth since its inception.

The performance of processors has increased by over 5000 times since the time

Intel introduced the first general-purpose microprocessor [8]. This increase in

processor performance has been fueled by several technology shifts at various

levels of the processor design flow – architecture, tools and techniques, circuits,

processes, and materials. These technology shifts not only provide a quantum

jump in performance, but also require us to rethink system architecture and

revisit fundamental questions regarding the scope and applicability of computing.

Specifically, at the architectural level, we have moved from scalar pro-

cessing, where a processor could execute one instruction every clock cycle, to

superscalar processing, where a processor could execute multiple instructions ev-

ery clock cycle, to out-of-order processing, where the processors could now also

execute instructions out-of-order, to on-chip multithreading (e.g., simultaneous

multithreading), where a processor could support multiple streams of execution

simultaneously. We are now at the cusp of another major technology shift at

the architectural level. This technology shift is towards multi-core architectures

– i.e., architectures with multiple processing nodes on the same die. Such pro-

cessors, also called chip multiprocessors, can not only support multiple streams

1

2

of program execution at the same time, but provide productivity advantages

over monolithic processors due to the relative simplicity of the cores, and hence

shorter design cycles. Such processors can also make better use of the hardware

resources, as the marginal utility of transistors is higher for a smaller processing

node with a smaller number of transistors.

While the potential technological advantages of such architectures are

apparent, one of the major questions facing computer architects right now is – how

should one design a multi-core architecture? That is, what should a multi-core

architecture look like? The final form and implementation will depend heavily

on the design methodology as well. Hence, another fundamental question that

needs to be addressed is – what should be the methodology for doing multi-core

design?

This thesis seeks to address these questions.

I.A Design Methodology for Multi-cores

One suggested (as well as practiced) methodology for multi-core design

is to take an off-the-shelf core design, optimize it for power and/or performance,

replicate it multiple times, and then connect the cores together using an intercon-

nection mechanism in a way that maximizes performance for a given area and/or

power budget. This is a clean, relatively easy way to design a multi-core because

one design team can work on the core, the other can work on the caches, the third

can work on the interconnection, and then there can be a team of chip-integrators

who will put them all together to create a multi-core (aka chip multiprocessor).

Such a methodology encourages modularity as well as reuse, and serves to keep

the design costs manageable.

However, this methodology is “multi-core oblivious”. This is because

each subsystem that constitutes the final chip multiprocessing system is designed

3

and optimized without any cognizance of the overall system it would become a

part of. For example, a methodology like the above forces each subsystem to

target the entire universe of applications (i.e, a set of all possible applications

that a processor is expected to run). This is an overly stringent constraint as the

real requirement is on the full system to target the universe where the individual

subsystems can be working cooperatively to that effect.

As this thesis shows, “multi-core oblivious” designs result in highly inef-

ficient processors in terms of area and power. This is because the above constraint

results in either overutilization or underutilization of processor resources. For ex-

ample, Pentium Extreme is a dual-core Intel processor that is constructed by

replicating two identical off-the-shelf cores. While the area and power cost of

duplicating cores is 2X (in fact, even more considering the glue logic required),

the performance benefits are significantly lower [93]. The thesis shows that while

the costs are superlinear with the number of cores for all “multi-core oblivious”

multi-core designs, the benefits tend to be highly sublinear. In fact, this sublin-

earity increases with increasing number of cores on the die, and it is becoming

increasingly clear that we need to design multi-cores differently.

I.A.1 Holistic Design

This thesis proposes a holistic approach to designing multi-core archi-

tectures. A holistic multi-core design methodology involves various processor

subsystems being designed from the ground up as different components of a full

system. This enables the various subsystems to work cooperatively in execut-

ing a certain task efficiently. Specifically, this thesis identifies three sources of

inefficiency in “multi-core oblivious” multi-core design and proposes the corre-

sponding holistic approaches that can significantly obviate inefficiency. The three

sources of inefficiency are inadaptability to workloads, resource overprovisioning,

4

and high interconnection overheads.

Workload Adaptability

There is diversity in workloads that a typical processor is expected to

run. This diversity can be due to diversity among applications or different threads

of the same application. It can also be due to diversity across varying program

phases within an application or varying processor load. If a multi-core is con-

structed by replicating an off-the-shelf core design, each core might be able to

target a certain class of applications well; however, the processor as a whole will

not be able to adapt to application diversity. Alternatively, a multi-core can be

constructed using “mediocre” cores [37], where a core is designed to perform ad-

equately over the entire universe of applications. Such a processor, however, will

be overprovisioned or underprovisioned for most individual applications. While

overprovisioning leads to wasted power and real estate, underprovisioning leads

to reduced performance.

This thesis recommends a holistic approach for adapting to workload

diversity. Instead of constructing a chip multiprocessor through replication of

one core design, the thesis advocates single-ISA heterogeneous multi-core archi-

tectures. That is, architectures with multiple types of cores on the same die.

These cores can all execute the same ISA (instruction-set architecture), but rep-

resent different points in the power performance continuum. For example, a

high-performance, high-power core and a low-performance, low-power core on the

same die. Applications can then be mapped to cores judiciously in a way that

each application or execution thread runs on the core whose resources match the

current execution needs. This significantly enhances the efficiency of computa-

tion and can result in processors that have up to 63% higher throughput than

the equivalent-budget “multi-core oblivious” homogeneous processors. The flex-

5

ibility to do resource matching also enables power reduction. The thesis shows

that more than three-fold power savings are possible.

Resource Overprovisioning

Resource overprovisioning causes inefficiency as even the unused transis-

tors consume power and occupy real estate. Designers usually provision the CPU

for a few important applications that each stress a particular resource. Similarly,

hardware often gets added to provide a feature even if not many applications use

it. This results in overprovisioning for most applications. When a multi-core is

constructed by blindly replicating such overprovisioned cores, the cost of over-

provisioning is exacerbated as it gets multiplied by the number of compute cores.

What is really needed to maintain is the same level of provisioning for any single

thread without scaling the costs by the number of cores.

This thesis proposes conjoined-core chip multiprocessing – a holistic ap-

proach to obviating the overprovisioning problem by allowing topologically fea-

sible sharing of overprovisioned structures between adjacent cores of a chip mul-

tiprocessor. The shared structures need to be accessible by both cores in a way

that does not require additional queues or pipeline stalls. The thesis investigates

several sharing policies consistent with the constraints of modern high-frequency

core designs. Sharing results are presented for instruction and data caches, the

floating-point unit, and the input ports of the crossbar connecting the cores to

the shared L2 cache. This thesis shows that intelligent policies to schedule access

to shared structures can minimize the performance degradation of conjoining to

10-12% while saving roughly half the area.

6

Interconnections Overheads

While inefficiency due to inadaptability and overprovisioning afflict even

monolithic processors, interconnection overheads result in a design problem unique

to multi-cores. This thesis examines the area, power, performance, and design

issues for the interconnects on a chip multiprocessor. It attempts to present a

comprehensive view of a class of interconnect architectures. It shows that the

design choices for the interconnect have significant effect on the rest of the chip,

potentially consuming a big fraction of the real estate and power budget. Since

these budgets are shared with the cores and the caches, the number, the size, and

the design of cores gets affected anytime the interconnection is made aggressive.

Conversely, anytime the number, the size, or the design of cores are scaled up,

it is going to place conflicting demands on the interconnect – requiring higher

bandwidth, but providing even less real estate.

This thesis shows that designs that treat the interconnect as an entity

that can be independently architected and optimized (the “multi-core oblivious”

designs) would not arrive at the best multi-core design. Several examples are

presented showing the need for careful, holistic co-design of multi-core proces-

sors. For instance, increasing interconnect bandwidth requires area that then

constrains the number of cores or cache sizes, and does not necessarily increase

performance. Also, shared level-2 caches become significantly less attractive when

the overhead of the resulting crossbar is accounted for.

As an example of holistic design, a hierarchical bus structure is ex-

amined which negates some of the performance costs of the assumed baseline

architectures. Hierarchical interconnection architectures recognize the diversity

in applications running on a multi-core and provide shorter coherence paths for

interactions between the physically adjacent cores than the cores that are lo-

cated far from each other. Such interconnection architectures can provide lower

7

average-case latency for coherence transactions at the expense of worse-case la-

tency.

I.B Overview of Dissertation

Chapter II gives background information on architecture and design of

multi-core processors. It details the reasons for the advent of multi-core archi-

tectures and discusses some prominent multi-core efforts. It also identifies the

the research issues that need to be addressed for a more widespread adoption of

multi-core technology.

Chapter III discusses how “multi-core oblivious” multi-core designs can-

not adapt to the diversity in workloads. It presents single-ISA heterogeneous

multi-core architectures as a holistic solution to adapting to diversity. These ar-

chitectures can provide significantly higher throughput for a given area or power

budget. Chapter IV shows how they can also be used to reducing processor power.

Chapter V discusses methodologies for holistic, ground-up design of multi-core

architecture and demonstrates their benefits over processors designed using off-

the-shelf components.

Chapter VI introduces overprovisioning as another source of significant

inefficiency in multi-core architectures that are designed by blindly replicating

cores. Such architectures unnecessarily multiply the cost of overprovisiong by the

number of compute nodes. The chapter introduces a holistic approach to address-

ing overprovisioning through conjoined-core chip-multiprocessing. Conjoined-core

multi-cores have adjacent cores sharing large, overprovisioned structures. In-

telligently scheduling accesses to the shared resources enables conjoined-core

multi-cores to achieve significantly higher efficiency (throughput/area) than their

“multi-core oblivious” multi-core counterparts.

Chapter VII details the overheads that conventional interconnection

8

mechanisms entail, especially as the number of cores increase and as transistors

get faster. The chapter shows that overheads become unmanageable very soon

and require a holistic approach to designing multi-cores where the interconnect

is co-designed with the cores, and the caches. Several examples are presented for

the need to co-design.

II

Background

This chapter provides background information on topics related to this

thesis. Chapter II.A explains why we are seeing an advent of multi-core archi-

tectures. II.B provides an overview of some groundbreaking multi-core efforts.

II.A Why Multi-cores

The processor industry has made giant strides in terms of speed and

performance. The first microprocessor, Intel 4004 [8], ran at 784 KHz while

the microprocessors of today run easily in the GHz range due to significantly

smaller and faster transistors. The increase in performance has been historically

consistent with Moore’s law that states that the number of transistors on the

processor die keeps doubling every eighteen months due to the transistors getting

smaller every successive process technology.

However, the price that one pays for getting performance has been going

up rapidly as well. For example, as Horowitz et al [65] show, the power cost for

squeezing a given amount of performance has been going up linearly with the

the performance of the processor. This is super-exponential increase over time.

Similarly, the area cost for squeezing a given amount of performance has been

9

10

going up as well.

In fact, one thing that the progress in processor architecture and tech-

nology has taught us is that the marginal utility of transistors is decreasing.

While area and power are roughly linear with the number of transistors, perfor-

mance is highly sublinear with the number of transistors. Empirically, it has been

close to the square root of the number of transistors [63, 62]. The main reason

why we are on the wrong side of the square law is that we have already extracted

the easy ILP (instruction-level parallelism) through techniques like superscalar

processing, out-of-order processing, etc.. The ILP that is left is difficult to ex-

tract. However, technology keeps making transistors available to us at the rate

predicted by Moore’s Law [101] (though it has slowed down, of late). We have

reached a point where we have more transistors available than we know how to

make effective use of in a conventional monolithic processor environment.

This quandary gives rise to multi-core computing. Instead of using all

the transistors to construct a monolithic processor targeting high single-thread

performance, we can use the transistors to construct multiple simpler cores where

each core can execute a program (or a thread of execution). Once we do that,

we can jump to the right side of the square law (see below). Such cores can

collectively provide higher many-thread performance (or throughput) than the

baseline monolithic processor at the expense of single-thread performance.

Consider, for example, the Alpha 21164 and Alpha 21264 cores. Alpha

21164 (also called, and henceforth referred to as, EV5) is an inorder processor

that was originally implemented in 0.5 micron technology [18]. Alpha 21264

(also called, and henceforth referred to as, EV6) is an out-of-order processor that

was originally implemented in 0.35 micron technology [19]. If we assume both

the processors to be mapped to the same 0.10 micron technology, an EV6 core

would be roughly five times bigger than an EV5 core (methodological details for

11

technology mapping in Chapter IV). If one were to take a monolithic processor

like EV6, and replace it with EV5 cores, one could construct a multi-core that

can support five streams of execution for the same area budget (ignoring the

cost of interconnection and glue logic). However, for the same technology, the

single-thread performance of an EV6 core is only roughly 2.0-2.2 times that of

an EV5 core (assuming performance is proportional to the square root of the

number of transistors). Hence, if we replaced an EV6 monolithic processor by a

processor with five EV5 cores, the aggregate throughput would be more than a

factor of two higher than the monolithic design for the same area budget. Similar

throughput gains can be shown even for a fixed power budget. This potential to

get significantly higher aggregate performance for the same budget is the main

motivation for multi-core architectures.

Another advantage of multi-cores over monolithic designs is improved

design productivity. The more complex a core is, the higher the design and verifi-

cation costs in terms of time, opportunity, and money. Several recent monolithic

designs have taken several thousand man years worth of work. A multi-core

enables deployment of pre-existing cores thereby bringing down the design and

verification costs. Even when the cores are designed from the ground up, the

simplicity of cores can keep the costs low. With increasing market competition

and declining hardware profit margins, the time-to-market of processors is more

important than before, and multi-cores help to that effect.

Other benefits of multi-cores over monolithic designs can be explained

as derivatives of the above two advantages.

II.B Chronicling Multi-core Efforts

This chapter provides an overview of some of the visible general-purpose

multi-core projects that have been undertaken in academia and industry. The

12

chapter does not claim completeness and is biased towards the first few general-

purpose multi-core processors that broke ground for mainstream multi-core com-

puting.

The first multi-core design was the Hydra [59]. Hydra was a 4-way chip

multiprocessor that integrated four 250 MHz MIPS cores on the same die. The

cores each had 8 KB private instruction and data caches and share a 128 KB

level-2 cache. The L1 caches were write-through and inclusion was maintained

between the L1s and the L2. Coherence was maintained by having all the caches

connected through a shared write bus and a read bus. Hydra was focused not

only on providing hardware parallelism for throughput-oriented applications, but

also on providing high single-thread performance for applications that can be

parallelized into threads by a compiler. Significant amount of support was pro-

vided in the hardware to aid the thread-level speculation efforts. Hydra never

got implemented, but an implementation of Hydra (0.25 micron technology) was

estimated to take up 88 mm2 of area.

One of the earliest commercial multi-cores, Piranha [26] was a 8-way chip

multiprocessor designed at DEC/Compaq WRL. It was targeted at commercial,

throughput-oriented workloads whose performance is not limited by instruction-

level parallelism. It integrated eight simple, inorder processor cores on the die.

Each core consisted of private 64 KB instruction and data caches and shared

a 1 MB L2 cache. Inclusion was not enforced between the L1s and the L2.

The connection between cores is through a high-bandwidth switch instead of

buses. The processor also integrated on the chip functionality required to support

scalability of the processor to large multiprocessing systems. Also, unlike Hydra,

the cores did not provide support for data speculation due to the nature of the

expected workload. Piranha never got implemented.

Around the same time as Piranha, Sun started the design of a multi-

13

core processor MAJC 5200 [126]. MAJC 5200 was a two-way chip-multiprocessor

where each core was a four-way issue VLIW (very large instruction word) proces-

sor. The processor was targeted at multimedia and Java applications. Each core

had a private 16KB L1 instruction cache. The cores shared a 16KB dual-ported

data cache. The shared L2 data cache aided in efficient space-time computing

(where one of the cores speculatively executes future instructions) as well as ver-

tical multithreading (where a running thread get swapped out of the core on a

cache miss and is replaced by a waiting thread). The processor also provided

other required functionality on the chip for speculative multithreading. Small L1

caches and the lack of an on-chip L2 cache made the processor unsuitable for com-

mercial workloads. One implementation of MAJC 5200 (0.22 micron technology)

took 15W of power and 220 mm2 of area.

Sun later came out with other multi-core products, like UltraSparc-

IV [123] and Niagara [80]. UltraSparc-IV is a dual-core processor where each

core is four-way superscalar and is two-way simultaneously multithreaded (SMT).

Cores have private L1 caches (32 KB 4-way instruction, 64 KB 4-way data).

Each core also has a private 8MB L2 cache. One implementation of UltraSparc-

IV (in 0.13 micron technology) operated at 1.2GHz, took a maximum of 198W

of power, and consisted of 66 million transistors. Niagara is an eight-core pro-

cessor where each core is four-way multithreaded. The processor is targeted to

applications with abundant thread-level parallelism. Single-thread performance

and instruction-level parallelism are only second-order concerns as each core is

in-order and scalar. Cores each have a 4-way 16KB private L1 instruction cache

and a 4-way 8KB data cache. The relatively small data cache is based on the

expectation that hardware multithreading (among the four threads) can effective

hide L1 miss latency. The cores are connected to a shared four-banked 3MB

L2 cache where each bank is 12-way set-associative. Connection is through a

14

200GB/s crossbar. One implementation of Niagara (in 0.90 micron technology)

operates at 1.2GHz, takes up 72W at 1.3V, has a die area of 37mm2, and consists

of 279 million transistors.

IBM’s multi-core efforts started with Power4 [68]. Power4, a contempo-

rary of MAJC 5200 and Piranha processors, was a dual-core processor running at

1GHz where each core was a five-issue out-of-order superscalar processor. Each

core consisted of a private direct-mapped 32KB instruction cache and a private 2-

way 32KB data cache. The cores were connected to a shared triply-banked 8-way

set-associative L2 cache. The connection was through a high-bandwidth crossbar

switch (called crossbar-interface unit). Four Power4 chips could be connected

together within a multi-chip module and made to logically share the L2. One

implementation of Power4 (in 0.13 micron technology) consisted of 184 million

transistors and took up 267mm2 in die area.

Power5 [69] was a successor to Power4. The most significant difference

was that the individual cores now were two-way simultaneously multithreaded for

a total of four threads per chip. Also, there was an increased level of integration

where the memory controllers were brought on-chip. Also, the interface to the

off-chip L3 was brought on-chip and coupling between the CPU and the L3 was

made stronger. A 130 nm implementation of Power5 was 389mm2 in size and

consisted of 287 million transistors.

IBM’s most ambitious multi-core offering arguably has been Cell [75].

Cell is a multi-ISA heterogeneous chip-multiprocessor that consists of one two-

way SMT dual-issue Power core and eight dual-issue SIMD (single instruction,

multiple data)-style Synergistic Processing Element (SPE) cores on the same die.

While the Power core executes the PowerPC instruction set (while supporting

the vector SIMD instruction set at the same time), the SPEs execute SIMD

instructions of variable widths. The Power core has a multi-level storage hierarchy

15

– 32KB instructions and data caches, and a 512KB L2. Unlike the Power core,

the SPEs operate only on their local memory (local store or LS). Code and

data must be transferred into the associated LS for an SPE to operate on. LS

addresses have an alias in the Power core address map, and transfers to/from

an individual LS and the global memory are kept coherent and done through

DMAs (direct memory accesses). An implementation of Cell in 90nm operated

at 3.2GHz, consisted of 234 million transistors and took 229mm2 of die area.

The first x86 multi-core processors were introduced by AMD last year.

The relatively slow adoption of multi-core technology for the most dominant ISA

in the market can be attributed to the then-perpetual success of the micropro-

cessor industry in continually driving the single-thread performance of processors

up by increasing clock speed. The diminishing marginal utility of transistors and

increasing power budgets eventually forced a move towards on-chip multithread-

ing and eventually chip multiprocessing. At the time of writing this thesis, AMD

offers Opteron [2], Athlon [3], and Turion [1] dual-core processors serving differ-

ent market segments. Intel’s dual-core offerings include Pentium D [10], Pentium

Extreme [11], Xeon [12], and Core Duo [9] processors.

One constraint for all the above multi-core designs was that they had

to be capable of running legacy code in their respective ISAs. This restricted the

degree of freedom in architecture and design of these processors. Three academic

multi-core projects that were not bound by such constraints were RAW, TRIPS,

and WaveScalar.

The RAW [130] processor consists of sixteen identical tiles spread across

the die in a regular two-dimensional pattern. Each tile consists of communica-

tion routers, one scalar MIPS-style core, an FPU (floating-point unit), a 32KB

DCache, and a software-managed 96KB Icache. Tiles are sized such that the

latency of communication between two adjacent tiles is always one cycle. Tiles

16

are connected using on-chip networks that interface with the tiles through the

routers. Hardware resources on a RAW processor (tiles, pins, and the intercon-

nect) are exposed to the ISA. This enables the compiler to generate aggressive

code that map more efficiently to the underlying computation substrate.

The TRIPS [112] processor consists of four large cores that are con-

structed out of small decentralized structures and are accompanied by resources

(like memory and wires) that are polymorphous. The cores can be partitioned

into small execution nodes when a program with high data-level parallelism needs

to be executed. These execution nodes can also be logically chained when exe-

cuting streaming programs. Like RAW, the microarchitecture is exposed to the

ISA. Unlike RAW and other multi-cores discussed above, the unit of execution is

a hyperblock. A hyperblock commits only when all instructions belonging to a

hyperblock finish execution.

WaveScalar [124] is an attempt at moving away from Von-Neumann

processing in order to get the full advantage of multi-cores. It has a dataflow

instruction set architecture that allows for traditional memory ordering semantics.

Each instruction executes on an ALU (arithmetic logic unit) that sits inside a

cache, and explicitly forwards the result to the dependent instructions. The

ALU + cache is arranged as regular tiles, thereby allowing the communication

overheads to be exposed to hardware. Like RAW and TRIPS, wavescalar also

supports all the traditional imperative languages.

There have been multi-core offerings in non-mainstream computing mar-

kets as well. A few examples are Broadcom SiByte (SB1250, SB1255, SB1455) [5],

PA-RISC (PA-8800) [7], Raza Microelectronics’ XLR processor [13] that has eight

MIPS cores, Cavium Networks’ Octeon [6] processor that has 16 MIPS cores,

Arm’s MPCore processor [4], and Microsoft’s Xbox 360 game console [14] that

uses a triple core PowerPC microprocessor.

III

Holistic Design for Adaptability:

Single-ISA Heterogeneous

Multi-core Architectures

This chapter discusses the implication of workload diversity on multi-

core design and presents a new class of holistically-designed architectures that

are significantly more efficient than “multi-core oblivious” designs. Section III.A

discusses the diversity present in computer workloads and how naively-designed

multi-core architectures cannot adapt to them. Section III.B introduces single-

ISA heterogeneous multi-core architectures that can adapt to workload diversity

and result in highly efficient computation. The chapter also discusses the schedul-

ing policies and mechanisms that are required to effect adaptability.

III.A Inefficiency due to Workload Diversity

Workloads can be diverse in various ways. There can be diversity among

applications (or different threads belonging to the same application). There can

be diversity within applications (data dependent or between different execution

17

18

phases of the same application). Then, there can be diversity in the number

of applications constituting a workload (or the number of threads for a given

application). Each has implications for multi-core design.

The amount of diversity among applications that a typical computer is

expected to run can be considerable. For example, there can often be more than

a factor of ten difference in the average performance of gcc and mcf on a given

processor [116]. The difference is due to a combination of the difference in their

semantics and resource requirements, and diversity in their program inputs. Even

in the server domain there can be diversity among threads. Here the diversity

can be because of batch processing, different threads processing different inputs,

or threads having different priorities.

A “multi-core oblivious” multi-core design (or a homogeneous design

that consists of identical cores) can target only a single point efficiently in the

diversity spectrum. For example, a decision might need to be made beforehand

if the core should be designed to target gcc or mcf. In either case, an application

whose resource demands are different from the amount of resources provided by

a core will suffer – the resource mismatch will either result in underutilization of

the resulting processor or it will result in low program performance. Note that

this is the same problem that a general-purpose uniprocessor faces as well, as the

same design is expected to perform well for the entire universe of applications.

The same is true of diversity within applications as well. There is sig-

nificant diversity among different phases of the same application. The diversity

is again due to difference in semantics, inputs and execution phases. Consider,

for example, applu. It is a computational fluid dynamics workload that performs

non-linear partial differential equations. Figure III.1 shows the performance of

applu over time when run on different cores belonging to the Alpha processor

family (the cores are assumed to be implemented in the same 0.10 micron tech-

19

0

0.4

0.8

1.2

1.6

2

1 201 401 601 801
Committed instructions (in millions)

(a)

IP
S

 (
in

 m
ill

io
n

s)

EV8-

EV6

EV5

EV4

Figure III.1: Performance of applu over time on Alpha cores

nology, methodological details later in the chapter). As the graph shows, not only

does the performance of applu change over time, so does the ratio of performance

of applu on different cores. There are phases of execution where the difference in

performance between the most complex core and the simplest core is only a few

percent. On the other hand, there are phases where the difference is more than

a factor of 10. Hence, even for the same application, there are inherently slow

phases (the ones with low instruction-level parallelism) that will be happy enough

on a simple core, while there are other phases that have high instruction-level

parallelism and can execute fast when provided with a high performance core. A

homogeneous multi-core design cannot target multiple types of phases and hence

intra-program diversity results in inefficient execution for such architectures.

Homogeneous multi-core architectures also suffer from the inability to

adjust to the diversity due to the varying number of threads in a workload. De-

20

pending on the workload, compute conditions, or objective functions, there are

scenarios where the number of threads is small, applications need high single-

thread performance, and peak throughput is not much of a concern. Such sce-

narios include single-threaded workloads, serial phases of a parallel program, low

server loads, high priority threads, etc. On the other hand, there are other scenar-

ios where the number of threads is high, high peak throughput is a requirement,

and single-thread performance is not much of a concern. Such scenarios include

multiprogrammed/multithreaded workloads, parallel phases of a parallel appli-

cation, high server loads, etc. The bane of a processor is that it is expected to

run both these classes of applications at one time or the other. A homogeneous

multi-core architecture is forced to make a choice between high single-thread per-

formance and high peak throughput (as determined by the number and complex-

ity of cores). This inability to adjust to varying levels of thread level parallelism

also results in processor inefficiency.

III.B Single-ISA Heterogeneous Multi-core Architectures

With the inadaptability of homogeneous multi-core architectures in mind,

we propose single-ISA heterogeneous multi-core architectures. That is, architec-

tures with multiple core types on the same die. The cores are all capable of exe-

cuting the same ISA (instruction-set architecture), but represent different points

in the power/performance continuum – a low-power, low-performance core and a

high-power, high-performance core on the same die, for example.

The advantages of single-ISA heterogeneous architectures stem from two

sources. The first advantage results from a more efficient adaptation to applica-

tion diversity. As discussed above, applications (or different phases of a single

application) place different demands on the architecture, stemming from the na-

ture of the computation [87]. While some applications take good advantage of

21

the most advanced processors, others often under-utilize that hardware and suf-

fer little performance loss when run on a less aggressive processor. For example,

a floating-point application with regular code might make good use of an out-

of-order pipeline with high issue width; however, a bandwidth-bound, control-

sensitive application might perform almost as well on an in-order core with low

issue width. Given a set of diverse applications and heterogeneous cores, we can

assign applications (or phases of applications) to cores such that those that ben-

efit the most from complex cores are assigned to them, while those that benefit

little from complex cores are assigned to smaller, simpler cores. This allows us

to approach the performance of an architecture with a larger number of complex

cores.

The second advantage from heterogeneity results from a more efficient

use of die area for a given thread-level parallelism. Successive generations of mi-

croprocessors have been providing diminishing performance returns per chip area.

This is evident from the following. Microprocessor implementation technology

has been scaling for many years according to Moore’s Law [101] for lithography

and roughly according to MOS scaling theory [38]. For a given O(n) scaling of

lithography, one can expect an equivalent O(n) increase in transistor speed and

an O(n2) increase in the number of transistors per unit area. If the increases in

transistor speed and transistor count were to directly translate to performance,

one would expect an O(n3) increase in performance. However, past micropro-

cessor performance has only been increasing at an O(n2) rate [63, 62]. This is

not too surprising, since the performance improvement of many microprocessor

structures (e.g., cache memories) is less than linear with their size.

Therefore, in an environment with large amounts of process or thread-

level parallelism, such a nonlinear relationship between transistor count and mi-

croprocessor speed means that higher throughputs could be obtained by building

22

a large number of small processors, rather than a small number of large processors.

However, in practice the amount of process or thread level parallelism in most

systems will vary with time. This implies that building chip-level multiprocessors

with a mix of cores – some large cores with high single-thread performance and

some small cores with high throughput per die area – is a potentially attractive

approach.

To explore the potential from heterogeneity, we model a number of chip

multiprocessing configurations that can be derived from combinations of two

existing off-the-shelf processors from the Alpha architecture family – the EV5

(21164) and the EV6 (21264) processors. Figure III.2 compares the various com-

binations in terms of their performance and their total chip area. In this figure,

performance is that obtained from the best static mapping of applications consti-

tuting multiprogrammed SPEC workloads to the processor cores. The staircase

represents the maximum throughput obtainable using a homogeneous configura-

tion for a given area.

We see from this figure that over a large portion of the graph the highest

performance architecture for a given area limit, often by a significant margin, is

a heterogeneous configuration. The increased throughput is due to the increased

number of contexts as well as improved processor utilization.

Constant-area comparisons do not tell the whole story, because equiv-

alent area does not necessarily imply equal cost, power, or complexity. But the

results are instructive, nonetheless. Note also that we explore a smaller subset of

the design space than possible for obtaining results for the graph because of our

constraint of focusing on just two generations of a commodity processor family

(studies with more generations of cores in Chapter IV). However, even with this

limited approach, our results in the graph make a case for the general advantages

for heterogeneity. For example, on the far left part of the graph, the area is

23

0

1

2

3

4

5

6

7

8

9

10

0 20000 40000 60000 80000

Area (in million design units)

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Heterogeneous Homogeneous

6EV6

5EV6

4EV6

3EV6

2EV6

1EV6

1EV5

2EV5

4EV
5

5EV5

6EV5

3EV5

1EV6-1EV5

1EV6-2EV5

1EV6-3EV5

5EV6-1EV5

4EV6-2EV5

3EV6-3EV5

4EV6-1EV5

2EV6-4EV5

3EV6-2EV5

3EV6-1EV5

2EV6-3EV5

2EV6-2EV5
1EV6-5EV5

1EV6-4EV5
2EV6-1EV5

Figure III.2: Exploring the potential of heterogeneity: Comparing the through-

put of six-core homogeneous and heterogeneous architectures for different area

budgets

24

insufficient to support a heterogeneous configuration of the EV6 and EV5 cores;

however, our other data (not plotted here) on heterogeneous architectures using

EV5 and EV4 (21064) cores confirm that these designs are superior in this region.

III.C Evaluation Methodology

This section discusses the methodological details for evaluating the ben-

efits of heterogeneous multi-core architectures over their homogeneous counter-

parts. It discusses how intelligent application-to-core scheduling is needed to ex-

ploit the throughput benefits. It also details the hardware assumptions made for

the evaluation and provides the methodology for constructing multiprogrammed

workloads for evaluation. The last two sub-sections discuss the simulation details

and the evaluation metrics respectively.

Supporting multi-programming

The primary issue when using heterogeneous cores for greater through-

put is with the scheduling, or assignment, of jobs to particular cores. We assume

a scheduler at the operating system level that has the ability to observe coarse-

grain program behavior over particular intervals, and move jobs between cores.

Since the phase lengths of applications are typically large [118], this enables the

cost of core switching to be piggybacked with the operating system context-switch

overhead. Core switching overheads are modeled in detail for the evaluation of

dynamic scheduling policies presented in this chapter – ones where jobs can move

throughout execution.

With multiple jobs and multiple cores, the task of the scheduler is to

find the best global assignment. All of our policies in this chapter strive to max-

imize average performance gain over all applications in the workload. Fairness

is not taken into consideration explicitly. All threads make good progress, but

25

if further guarantees are needed, we assume the priorities of those threads that

need performance guarantees will reflect that. The heterogeneous architecture

is also ideally suited to manage varied priority levels, but that advantage is not

explored here.

An additional issue with heterogeneous multi-core architectures sup-

porting multiple concurrently executing programs is cache coherence. In this

chapter, we study multi-programmed workloads with disjoint address spaces, so

the particular cache coherence protocol is not an issue (even though we do model

the performance effects of the writeback of dirty cache data during core switch-

ing). However, when there are differences in cache line sizes and/or per-core

protocols, the cache coherence protocol might need some redesign. We believe

that even in those cases, cache coherence can be accomplished with minimal

additional overhead.

Minor differences in the ISA between processor generations can be han-

dled easily. Either programs are compiled to the least common denominator (the

EV5), or we use software traps for the older cores. If extensive use is made of the

software traps, our mechanisms will naturally shy away from those cores, due to

the low performance.

Hardware assumptions

Table III.C summarizes the configurations used for the EV5 (Alpha

21164) and the EV6 (Alpha 21264) cores that we use for our throughput-related

evaluations. The cores are assumed to be implemented in 0.10 micron technology

and are clocked at 2.1 GHz (the EV6 frequency when scaled to 0.10 micron).

In addition to the individual L1 caches, all the cores share an on-chip

4 MB, 4-way set-associative, 16-way L2 cache. The cache line size is 128 bytes.

Each bank of the L2 cache has a memory controller and an associated RDRAM

26

Table III.1: Configuration and area of the EV4 and EV6 cores.

Processor EV5 EV6

Issue-width 4 6 (Out-of-order)

I-Cache 8KB, Direct-mapped 64KB, 2-way

D-Cache 8KB, Direct-mapped 64KB, 2-way

Branch Pred. 2K-gshare hybrid 2-level

Number of MSHRs 4 8

Number of threads 1 1

Area (in mm2) 5.06 24.5

channel. The memory bus is assumed to be clocked at 533Mhz, with data be-

ing transferred on both edges of the clock for an effective frequency of 1GHz

and an effective bandwidth of 2GB/s per bank. Note that for any reasonable

assumption about power and ground pins, the total number of pins that this

memory organization would require would be well within the ITRS limits[15] for

the cost/performance market. A fully-connected matrix crossbar interconnect is

assumed between the cores and the L2 banks. All L2 banks can be accessed si-

multaneously, and bank conflicts are modeled. The access time is assumed to be

10 cycles. Memory latency was set to be 150 ns. We assume a snoopy bus-based

MESI coherence protocol and model the writeback of dirty cache lines for every

core-switch.

Table III.C also presents the area occupied by the cores. These were

computed using a methodology outlined in Chapter IV. As can be seen from the

table, a single EV6 core occupies as much area as 5 EV5 cores.

To evaluate the performance of heterogeneous architectures, we perform

comparisons against homogeneous architectures occupying equivalent area. We

27

assume that the total area available for cores is around 100 mm2. This area can

accommodate a maximum of 4 EV6 cores or 20 EV5 cores. We expect that while

a 4-EV6 homogeneous configuration would be suitable for low-TLP (thread-level

parallelism) environments, the 20-EV5 configuration would be a better match

for the cases where TLP is high. For studying heterogeneous architectures, we

choose a configuration with 3 EV6 cores and 5 EV5 cores with the expectation

that it would perform well over a wide range of available thread-level parallelism.

It would also occupy roughly the same area.

For the chosen cache configuration, the area occupied by the L2 cache

would be around 135 mm2. The rest of the logic (e.g. 16 memory-controllers,

crossbar interconnect etc.) might occupy up to 50 mm2 (crossbar area calcu-

lations assume 300 bit wide links implemented in the M3/M5 layer; memory-

controller area assumptions are consistent with Piranha [26] estimates). Hence,

the total die size would be approximately 285 mm2. Note that actual area might

be dependent on the layout and other issues, but the above assumptions provide

a first-order model adequate for this study.

Workload construction

All our evaluations are done for various thread counts ranging from one

through the maximum number of available processor contexts. Instead of choos-

ing a large number of benchmarks and then evaluating each number of threads

using workloads with completely unique composition, we instead choose a rela-

tively small number of SPEC2000 benchmarks (8) and then construct workloads

using these benchmarks. Table III.2 summarizes the benchmarks used. These

benchmarks are evenly distributed between integer benchmarks (crafty, mcf, eon,

bzip2) and floating-point benchmarks (applu, wupwise, art, ammp). Also, half of

them (applu, bzip2, mcf, wupwise) have a large memory footprint (over 175MB),

28

Table III.2: Benchmarks simulated for evaluating heterogeneous multi-cores for

throughput

Program Description fast-forward

(billion instr)

ammp Computational Chemistry 8.75

applu Parabolic/Elliptic Partial Diff. Equations 116

art Image Recognition/Neural Networks 15

bzip2 Compression 65

crafty Game Playing:Chess 83

eon Computer Visualization 55

mcf Combinatorial Optimization 55

wupwise Physics/Quantum Chromodynamics 88

while the other half (ammp, art, crafty, eon) have memory footprints of less

than 30MB. All the data points are generated by evaluating 8 workloads for each

case and then averaging the results. A workload consisting of n threads is con-

structed by selecting the benchmarks using a sliding window (with wraparound)

of size n and then shifting the window right by one. Since there are 8 distinct

benchmarks, the window selects eight distinct workloads (except for cases when

the window-size is a multiple of 8, in those cases all the selected workloads have

identical composition). All of these workloads are run, ensuring that each bench-

mark is equally represented at every data point. This methodology for workload

construction is similar to that used in [129, 120].

29

Simulation approach

Benchmarks are simulated using SMTSIM, a cycle-accurate execution-

driven simulator that simulates an out-of-order, simultaneous multithreading pro-

cessor [127]. SMTSIM executes unmodified, statically linked Alpha binaries. The

simulator was modified to simulate the various multi-core architectures.

The Simpoint tool [118] was used to find good representative fast-

forward distances for each benchmark. Fast-forwarding involves skipping the

initial instructions of a benchmark during simulation so that only representative

portions of the benchmark are accounted during measurements. Table III.2 also

shows the distance each benchmark was fast-forwarded before beginning simula-

tion. Unless otherwise stated, all simulations involving n threads were done for

500 × n million total instructions. All the benchmarks are simulated using ref

inputs provided by the SPEC.

Evaluation metrics

In a study like this, IPC (number of total instructions committed per

cycle) is not a reliable metric as it would inordinately bias all the heuristics

(and policies) against inherently slow-running threads. Any policy that favors

high-IPC threads boosts the reported IPC by increasing the contribution from

the favored threads. But this does not necessarily represent an improvement.

While the IPC over a particular measurement interval might be higher, in a

real system the machine would eventually have to run a workload inordinately

heavy in low-IPC threads, and the artificially-generated gains would disappear.

Hence, we use weighted speedup [120, 128] for our evaluations. In this chapter,

weighted speedup measures the arithmetic sum of the individual IPCs of the

threads constituting a workload divided by their IPC on a baseline configuration

when running alone. This metric makes it difficult to produce artificial speedups

30

by simply favoring high-IPC threads.

As another axis of comparison, we also present results from open sys-

tem experiments where jobs enter and leave the system at random rates. This

represents a real system with variable job-arrival rates and variable service times.

The systems are then compared in terms of average response time of applications

as well as system queue lengths. Response time of an application, as used in

this chapter, is the time between job submission and job completion, and hence

accounts for the queuing delays that might be incurred when the processor is

busy. We believe that this is a better metric than throughput to quantify the

performance of a real system with variable job inter-arrival rates and/or variable

job service times.

III.D Scheduling for Throughput: Analysis and Results

In this section, we demonstrate the performance advantage of the het-

erogeneous multi-core architectures for multithreaded workloads and demonstrate

job-to-core assignment mechanisms that allow the architecture to deliver on its

promise. The first two subsections focus on the former, and the rest of the section

demonstrates the further gains available from a good job assignment mechanism.

Static scheduling for inter-thread diversity

A heterogeneous architecture can exploit two dimensions of diversity

in an application mix. The first is diversity between applications. The second

is diversity over time within a single application. Prior work [118, 131] has

shown that both these dimensions of diversity occur in common workloads. In

this section, we attempt to separate these two effects by first looking at the

performance of a static assignment of applications to cores. Note that the static

assignment approach may not eliminate the need for core switching in several

31

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d
Sp

ee
du

p

Number of threads

4EV6
20EV5

3EV6 & 5EV5 (static best)

Figure III.3: Benefits from heterogeneity - static scheduling for inter-thread di-

versity

cases, because the best assignment of jobs to cores will change as jobs enter and

exit the system.

Figure III.3 shows the results comparing one heterogeneous architecture

against two homogeneous architectures all requiring approximately the same area.

The heterogeneous architecture that we evaluate includes 3 EV6 cores and 5 EV5

cores, while the two homogeneous architectures that we study have 4 EV6 cores or

20 EV5 cores, respectively. For each architecture, the graph shows the variation

of the average weighted speedup for varying number of threads.

For the homogeneous CMP configuration, we assume a straightforward

scheduling policy, where as long as a core is available, any workload can be as-

signed to any core. For the heterogeneous case, we use an assignment that seeks

to match the optimal static configuration as closely as possible. The optimal

configuration would factor in even the potential shared L2 cache interactions.

32

However, determining this configuration is only possible by running all possible

combinations. Instead, as a simplifying assumption, our scheduling policy as-

sumes no knowledge of L2 interactions (only for determining core assignments –

the interactions are still simulated) when determining the static assignment of

workloads to cores. This simplification allows us to find the best configuration

(defined as the one which maximizes weighted speedup) by simply running each

job alone on each of our unique cores and using that to guide our core assignment.

This results in consistently good, if not optimal, assignments. For a few cases,

we compared this approach to an exhaustive exploration of all combinations; our

results indicated that this results in performance close to the optimal assignment.

The use of weighted speedup as the metric ensures that those jobs as-

signed to the EV5 are those that are least affected (in relative IPC) by the

difference between EV6 and EV5. In both the homogeneous and heterogeneous

cases, once all the contexts of a processor get used, we just assume that the

weighted speedup will level out as shown in the Figure III.3. The effects when

the number of jobs exceeds the number of cores in the system (e.g., additional

context switching) is modeled more exactly in the following section.

As can be seen from Figure III.3, even with a simple static approach,

the results show a strong advantage for heterogeneity over the homogeneous de-

signs, for most levels of threading. The heterogeneous architecture attempts to

combine the strengths of both the homogeneous configurations - CMPs of a few

powerful processors (EV6 CMP) and CMPs of many less powerful processors

(EV5 CMP). While for low threading levels, the applications can run on power-

ful EV6 cores resulting in high performance for each of the few threads, for higher

threading levels the applications can run on the added EV5 contexts enabled by

heterogeneity, resulting in higher overall throughput.

The results in Figure III.3 show that the heterogeneous configuration

33

achieves performance identical to the homogeneous EV6 CMP from 1 to 3 threads.

At 4 threads, the optimum point for the EV6 CMP, that configuration shows a

slight advantage over the heterogeneous case. However, this advantage is very

small because with 4 threads, the heterogeneous configuration is nearly always

able to find one thread that is impacted little by having to run on an EV5 instead

of EV6. As soon as we have more than 4 threads, however, the heterogeneous

processor shows clear advantage.

The superior performance of the heterogeneous architecture is directly

attributable to the diversity of the workload mix. For example, mcf underutilizes

the EV6 pipeline due to its poor memory behavior. On the other hand, bench-

marks like crafty and applu have much higher EV6 utilization. Static scheduling

on heterogeneous architectures enables the mapping of these benchmarks to the

cores in such a way that overall processor utilization (average of individual core

utilization values) is high.

The heterogeneous design remains superior to the EV5 CMP out to 13

threads, well beyond the point where the heterogeneous architecture runs out of

processors and is forced to queue jobs. Beyond that, the raw throughput of the

homogeneous design with 20 EV5 cores wins out. This is primarily because of

the particular heterogeneous designs we chose. However, we can always come up

with a different configuration that is competitive with more threads (e.g., fewer

EV6’s, more EV5’s), if that is the desired design point.

Compared to a homogeneous processor with 4 EV6 cores, the hetero-

geneous processor performs up to 37% better with an average 26% improvement

over the configurations considering 1-20 threads. Relative to 20 EV5 cores, it

performs up to 2.3 times better, and averages 23% better over that same range.

These results demonstrate that over a range of threading levels, a het-

erogeneous architecture can outperform comparable homogeneous architectures.

34

Although the results are shown here only for a particular area and two core types,

our experiments with other configurations (at different processor areas and core

types) indicate that these results are representative of other heterogeneous con-

figurations as well.

Dynamic scheduling for intra-thread diversity

The previous sections demonstrated the performance advantages of the

heterogeneous architecture when exploiting core diversity for inter-workload vari-

ation. However, that analysis has two weaknesses – it used unimplementable

assignment policies in some cases (e.g., the static assignment oracle) and ignored

variations in the resource demands of individual applications. This section solves

each of these problems, and demonstrates the importance of good dynamic job

assignment policies.

Prior work has shown that an application’s demand for processor re-

sources varies across phases of the application. Thus, the best match of appli-

cations to cores will change as those applications transition between phases. In

this section, we examine implementable heuristics that dynamically adjust the

mapping to improve performance.

These heuristics are sampling-based. During the execution of a work-

load, every so often, a trigger is generated that initiates a sampling phase. In the

sampling phase, the scheduler permutes the assignment of applications to cores.

During this phase, the dynamic execution profiles of the applications being run

are gathered by referencing hardware performance counters. These profiles are

then used to create a new assignment, which is then employed during a much

longer phase of execution, the steady phase. The steady phase continues until

the next trigger. Note that applications continue to make forward progress during

the sampling phase, albeit perhaps non-optimally.

35

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

W
ei

gh
te

d
Sp

ee
du

p

Number of threads

4EV6
3EV6 & 5EV5 (random)

3EV6 & 5EV5 (static best)
3EV6 & 5EV5 (sample-one)
3EV6 & 5EV5 (sample-avg)

3EV6 & 5EV5 (sample-sched)

Figure III.4: Three strategies for evaluating the performance an application will

realize on a different core

In terms of the core sampling strategies, There are a large number of

application-to-core assignment permutations possible. We prune the number of

permutations significantly by assuming that we would never run an application

on a less powerful core when doing so would leave a more powerful core idle

(for either the sampling phase or the steady phase). Thus, with four threads

on our 3 EV6/5 EV5 configuration, four possible assignments are possible based

on which thread gets allocated to the EV5. With more threads, the number of

permutations increase, up to 56 potential choices with eight threads. Rather than

evaluating all these possible alternatives, our heuristics only sample a subset of

possible assignments. Each of these assignments are run for 2 million cycles. At

the end of the sampling phase, we use the collected data to make assignments.

Selection of the assignments to be sampled depends on how much we

account for interactions at the L2 cache level (which, if large, can color the data

collected for all threads and lead to inappropriate decisions). We evaluated three

36

strategies for sampling the assignment space.

The first strategy, sample-one, samples as many assignments as is needed

to run each thread once on each core-type. This assumes that the single sample is

accurate, regardless of what other jobs are doing. Then the assignment is made,

maximizing weighted speedup under the assumption future performance will be

the same as our one sample for each thread. The assignment that maximizes

weighted speedup is simply the one that assigns to the EV5s those jobs whose

ratio of average EV5 throughput to EV6 throughput is highest.

The second strategy, sample-avg, assumes we need multiple samples

to get the average behavior of a job on each core. In this case, we sample as

many times as there are threads running. The samples are distinct and are done

such that we get at least two runs of each thread on each core type, then base

the assignment (again maximizing expected weighted speedup) on the average

performance of each thread on each core.

The third strategy, sample-sched, assumes we know little about a par-

ticular assignment unless we have actually run it. It thus samples a number of

possible assignments, and then is constrained to choose one of the assignments it

sampled. In fact, we sample 4 × n representative assignments for a n-threaded

workload (bounded by the maximum possible for that configuration). Selection

of the best core assignment, of those sampled, is the one that maximizes total

weighted speedup, using average EV5 throughput for each thread as the baseline.

Figure III.4 presents a quantitative comparison of the effectiveness of

the three strategies. The average weighted speedup values reported here were ob-

tained using a default time-based trigger that resulted in a sampling phase being

triggered every 500 million processor cycles; we later evaluate the impact of other

time intervals. Also included in the graph, for comparison, are (1) the results ob-

tained using the homogeneous multi-core processor, (2) the random assignment

37

policy described in the previous section, and (3) the best static assignment found

previously.

As suggested by the graph, the sample-sched strategy performs the best,

although sample-avg has very similar performance (within 2%). Even sample-one

is not much worse. We observed a similar trend for other time intervals and for

other trigger types. We conclude from this result that for our workload and L2

cache configuration, the level of interaction at the L2 cache is not sufficient to

affect overall performance unduly. We use sample-avg as the basis for our trigger

evaluation in the discussion to follow as it not only has lower overhead than

sample-sched, but is also more robust than both sample-sched and sample-one

against worst-case events like phase changes during sampling.

The second significant result that the graph shows is that the intelli-

gent assignment policies make a significant performance difference, allowing us

to outperform the random core assignment strategy by up to 22%. Perhaps more

surprising is the importance of the dynamic sampling and reconfiguration, as we

outperform the static best by as much as 10%. We take a hit at 4 threads, when

the sampling overhead first kicks in, but quickly recover that loss as the num-

ber of threads increases, maximizing the scheduler’s flexibility. The results also

suggest that fairly good decisions can be made about an application’s relative

performance on various cores even if it runs for no more than 2 million cycles on

each core. This also indicates that the cold-start effect on core-switching is much

less than the running time on a core during sampling – it would be difficult to

make good decisions during a short sampling period if cold-start effects are high.

Sampling overhead depends significantly on the trigger mechanisms.

Sampling effectively requires juggling two conflicting goals – minimizing sam-

pling overhead and reacting quickly to changes in workload behavior. To manage

this tradeoff, we compare two classes of trigger mechanisms, one based on a pe-

38

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

W
ei

gh
te

d
Sp

ee
du

p

Number of threads

4EV6
3EV6 & 5EV5 (static best)

3EV6 & 5EV5 (random)
3EV6 & 5EV5 (steady_500M)
3EV6 & 5EV5 (steady_250M)
3EV6 & 5EV5 (steady_125M)

3EV6 & 5EV5 (steady_62.5M)
3EV6 & 5EV5 (steady_31.25M)

Figure III.5: Sensitivity to sampling frequency for time-based trigger mechanisms

using the sample-avg core-sampling strategy

riodic timer, and the second based on events indicating significant changes in

performance.

We begin by evaluating the first class and the performance impact of

varying the amount of time between sampling phases, that is, the length of the

steady phase. For smaller steady phase lengths, a greater fraction of the total

time is spent in the sampling phases, thus contributing overhead. The overhead

derives from, first, the overhead of application core switching each time we sample

a different configuration, and second, the fact that sampling is usually running

non-ideal configurations.

Figure III.5 presents a comparison of the average weighted speedup ob-

tained with steady-phase lengths between 31.25 million and 500 million cycles

for the sample-average strategy. We note from this graph that the sampling fre-

quency has a second-order impact on performance while the steady-phase length

39

of 125 million cycles performs best overall. Also, in a similar observation as

in [87], we found that the act of core-switching has relatively small overhead. So,

the optimal sampling frequency is determined by the average phase length for

the applications constituting the various workloads, as well as the ratio of the

lengths of the steady phase and the sampling phase.

While time-triggered sampling is very simple to implement, it does not

capture either inter-thread or intra-thread diversity fully. A fixed sampling fre-

quency is inadequate when the phase lengths of different applications in the work-

load mix are different. Also, each application can demonstrate multiple phases

each with its own phase length. For example, in our simulation window, while

art demonstrates a periodic behavior with phase length of 80 million instruc-

tions, mcf demonstrates at least two distinct phases with one of the phases at

least 350 million instructions long. Any sampling-based heuristic that hopes to

capture phase changes for both art and mcf, with minimal overhead, needs to be

adaptive.

Therefore, we consider the second class of trigger mechanisms. Here,

we monitor the run-time behavior of the workload and detect when sufficiently

significant changes have occurred. We consider three instantiations of this trigger

class. With the individual-event trigger, a sampling phase is triggered every

time the steady-phase IPC of an individual thread changes by more than 50%.

In contrast, with the global-event trigger, we sum the absolute values of the

percent changes in IPC for each application, and trigger a sampling phase when

this value exceeds 100%. The last heuristic, bounded-global-event, modifies the

global-event trigger by initiating a sampling phase if more than 300 million cycles

has elapsed since the last sampling phase, and avoiding sampling if the global

event trigger occurs within 50 million cycles since the last sampling phase. All

the thresholds were determined by observing the execution characteristics of the

40

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

W
ei

gh
te

d
Sp

ee
du

p

Number of threads

4EV6
3EV6 & 5EV5 (random)

3EV6 & 5EV5 (static best)
3EV6 & 5EV5 (steady_125M)

3EV6 & 5EV5 (individual-event)
3EV6 & 5EV5 (global-event)

3EV6 & 5EV5 (bounded-global-event)

Figure III.6: Comparison of event-based triggers using the sample-avg core-

sampling strategy

simulated applications.

Figure III.6 presents a comparison of these three event-based triggers,

along with the time-based trigger mechanism using a steady-state length of 125

million cycles (the best one from the previous discussion). We continue to use

the sample-avg core-sampling strategy. The graph also includes the static-best

heuristic from Section III.D, and the homogeneous core. As we can see from the

figure, the event-based triggers out-perform the best timer-based trigger and the

static assignment approach. This mechanism effectively meets our two goals of

reacting quickly to workload changes and minimizing sampling.

While the individual event trigger performs well in general, using a

global event trigger achieves better performance. This is because a change in the

behavior of a single application might often not result in changing the workload-

to-cores mapping. Using a global event trigger guards against these false pos-

41

itives. The bounded-global-event trigger achieves the best performance (close

to a 20% performance improvement over static) indicating the benefits from a

hybrid timer-based and event-based approach. It has all the advantages of a

global-event trigger, but the bounds also help to guard against oversampling

and undersampling. By eliminating most of the sampling overhead, this hybrid

scheme also closes the gap again with the homogeneous processor at 4 threads.

Similar trends were observed for different values of parameters embodied in the

event-based triggers.

To summarize this section, the results presented indicate that dynamic

heuristics which intelligently adapt the assignment of applications to cores can

better leverage the diversity advantages of a heterogeneous architecture. Com-

pared to the base homogeneous architecture, the best dynamic heuristic achieves

close to a 63% improvement in throughput in the best case (for 8 threads) and

an average improvement in throughput of 17% over configurations running 1-8

threads. Even more interesting, the best dynamic heuristic achieves a weighted

speedup of 6.5 for eight threads, which is close to 80% of the optimal speedup (8)

achievable for this configuration (despite the fact that over half of our cores have

roughly half the raw computation power of the baseline core!). In contrast, the

homogeneous configuration achieves only 50% of the optimal speedup. We have

also demonstrated the importance of an intelligent dynamic assignment, which

achieves up to 31% improvement over a random scheduler.

While our relatively simple dynamic heuristics are effective, there are

clearly many other heuristics that could be considered. For example, event-based

sampling could be based on other metrics aside from IPC, such as changes in ILP,

cache or branch behavior, or basic block profiles as suggested in [118]. Further,

rather than using past behavior as a simple approximation for future behavior,

more complex models for phase identification and prediction [118] could also be

42

used.

Open system experiments

Graphs of performance at various threading levels are instructive, but do

not necessarily reflect real system performance accurately. Real systems typically

operate at a variety of threading levels (run queue sizes), and observed perfor-

mance is a factor of the whole range. Thus, while a particular architecture may

appear to be optimal at a single point (even if that design point represents the

expected average behavior), it may not be optimal on a system that experiences

a range of demand levels. This section explores the performance of heterogeneous

architectures on an open system. It does so with a sophisticated simulation frame-

work that models random job arrivals and random job lengths. This addresses

some methodological issues that remain even when using the weighted speedup

metric. In this experiment, we are able to guarantee that every simulation exe-

cutes the exact same set of instructions. Additionally, we are able to use average

response time as our performance metric.

We model a system where jobs enter and leave the system with expo-

nentially distributed arrival rate λ and exponentially distributed average time to

complete a job T. We study the two systems for varying values of λ and observe

the effects on mean response time, queue length, and stability of the systems.

Whenever a system is stable, it is better to measure response time rather than

throughput, since throughput cannot possibly exceed the rate of job arrival. If

two stable systems are compared and one is faster, the faster one will complete

jobs more quickly and thus typically have fewer jobs queued up waiting to run.

For these experiments, we randomly generate jobs (using a Poisson

model) centered around an average expected execution time of 200 million cycles

on an EV6. Jobs are generated by first generating random numbers with average

43

0

200

400

600

800

1000

0.01 0.015 0.02 0.025 0.03 0.035

A
ve

ra
ge

 r
es

po
ns

e-
tim

e
(i

n
m

ill
io

n
cy

cl
es

)

Job-arrival rate (in #jobs/million cycles)

4EV6
3EV6 & 5EV5

Figure III.7: Limiting response-time for various loads on comparable budget

homogeneous and heterogeneous architectures

distribution centered around 200 million cycles and then executing that many

instructions multiplied by the single-threaded IPC of the benchmarks on EV6.

We then simulate different mean job arrival rates with exponential distributions.

To model a random system but produce repeatable results, for each point on

the job arrival rate axis, we feed the same jobs in the same order with the same

arrival times to each of the systems under experimentation.

For the heterogeneous configuration, we use a naive scheduling heuris-

tic which simply assigns jobs randomly, only ensuring that the more powerful

processors get used before the less powerful. Significant improvements over this

heuristic will be demonstrated in the following section.

Figure III.7 shows the results for these experiments. The most profound

difference between the homogeneous and the heterogeneous architectures is that

they saturate at very different throughputs. The homogeneous architecture sees

44

unbounded response times as the arrival rate approaches its maximum through-

put around 2 jobs per 100 million cycles. At this point, its run queue becomes

(if we ran the simulations long enough) infinite.

However, the heterogeneous architecture remains stable well beyond this

point. Furthermore, the scheduling heuristics we will demonstrate in the following

section will actually increase the maximum throughput of the architecture, so

its saturation point would be even further out. The heterogeneous architecture

also sees average response time improvements well before the other architecture

becomes saturated. There is only a very narrow region where the homogeneous

architecture sees no queuing beyond 4 jobs, but the heterogeneous is forced to

use an EV5 occasionally, where the homogeneous architecture sees some slight

advantage. As soon as the probability of queue lengths beyond four becomes

non-insignificant, the heterogeneous architecture is superior.

Another interesting point to note is that, besides supporting greater

throughput in peak load conditions, heterogeneous chip-level multiprocessor re-

sponse time degrades more gracefully under heavier loads than for homogeneous

processors. This should enhance system reliability in transient high load condi-

tions. This is particularly important as the reliability and availability of systems

become more important with the maturity of computer technology.

III.E Acknowledgment

The text of Chapter III is in part a reprint of the material as it appears

in the proceedings of the Thirty-first International Symposium on Computer

Architecture (pp64-75, June 2004). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed the

research which forms the basis for Chapter III.

IV

Holistic Design for Adaptability:

Power Advantages of

Heterogeneity

The ability of single-ISA heterogeneous multi-core architectures to adapt

to workload diversity can also be used for improving the energy efficiency of

processors. Again, the architecture consists of a chip-level multiprocessor with

multiple, diverse processor cores. These cores all execute the same instruction

set, but include significantly different resources and achieve different performance

and energy efficiency on the same application. During an application’s execution,

the operating system software tries to match the application to the different cores,

attempting to meet a defined objective function. For example, it may be trying to

meet a particular performance requirement or goal, but doing so with maximum

energy efficiency.

45

46

IV.A Discussion of Core Switching

There are many reasons, some discussed in previous sections, why the

best core for execution may vary over time. The demands of executing code vary

widely between applications; thus, the best core for one application will often

not be the best for the next, given a particular objective function (assumed to

be some combination of energy and performance). In addition, the demands of a

single application can also vary across phases of the program.

Even the objective function can change over time, as the processor

changes power conditions (e.g., plugged vs. unplugged, full battery vs. low

battery, thermal emergencies), as applications switch (e.g., low priority vs. high

priority job), or even within an application (e.g., a real-time application is behind

or ahead of schedule).

The experiments in the following sections explore only a subset of these

possible changing conditions. Specifically, we examine adaptation to phase changes

in single applications. However, by simulating multiple applications and several

objective functions, it also indirectly examines the potential to adapt to chang-

ing applications and objective functions. We believe a real system would see far

greater opportunities to switch cores to adapt to changing execution and envi-

ronmental conditions than the narrow set of experiments exhibited here.

This work examines a diverse set of execution cores. In a processor

where the objective function is static (and perhaps the workload is well known),

some of our results indicate that a smaller set of cores (often two) will suffice to

achieve very significant gains. However, if the objective function varies over time

or workload, a large set of cores has even greater benefit.

47

IV.B Choice of cores

To provide an effective platform for a wide variety of application execu-

tion characteristics and/or system priority functions, the cores on the heteroge-

neous multi-core processor should cover both a wide and evenly spaced range of

the complexity/performance design space.

In this study, we consider a design that takes a series of previously

implemented processor cores with slight changes to their interface – this choice

reflects one of the key advantages of the CMP architecture, namely the effective

amortization of design and verification effort. We include four Alpha cores – EV4

(Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha 21264) and a single-threaded

version of the EV8 (Alpha 21464), referred to as EV8-. These cores demonstrate

strict gradation in terms of complexity and are capable of sharing a single exe-

cutable. We assume the four cores have private L1 data and instruction caches

and share a common L2 cache, phase-lock loop circuitry, and pins.

We chose the cores of these off-the-shelf processors due to the availabil-

ity of real power and area data for these processors, except for the EV8 where

we use projected numbers [39, 44, 79, 100]. All these processors feature 64-bit

architectures. Note that mapping cores from one process generation to another

has been shown to be feasible across a few generations [82].

Figure IV.1 shows the relative sizes of the cores used in the study, as-

suming they are all implemented in a 0.10 micron technology (the methodology

to obtain this figure is described in the next section). It can be seen that the

resulting processor is only modestly (within 15%) larger than the EV8- core by

itself.

For this research, to simplify the initial analysis of this new execution

paradigm, we assume only one application runs at a time on only one core. This

design point could either represent an environment targeted at a single application

48

EV8-

EV6

EV5

EV4

Figure IV.1: Relative sizes of the Alpha cores when implemented in 0.10 micron

technology

49

at a time, or modeling policies that might be employed when a multithreaded

multi-core configuration lacks thread parallelism. Because we assume a maximum

of one thread running, the multithreaded features of EV8 are not needed. Hence,

these are subtracted from the model, as discussed in Section IV.D. In addition,

this assumption means that we do not need more than one of any core type.

Finally, since only one core is active at a time, we implement cache coherence by

ensuring that dirty data is flushed from the current core’s L1 data cache before

execution is migrated to another core.

This particular choice of architectures also gives a clear ordering in both

power dissipation and expected performance. This simplifies the design of core-

switching algorithms and is a natural outcome of choosing existing cores from a

family. However, in Chapter V, we consider a more unordered set of cores.

IV.C Switching applications between cores

Typical programs go through phases with different execution character-

istics [115, 131]. Therefore, the best core during one phase may not be best for

the next phase. This observation motivates the ability to dynamically switch

cores in mid execution to take full advantage of our heterogeneous architecture.

There is a cost to switching cores, so we must restrict the granularity

of switching. One method for doing this would switch only at operating system

timeslice intervals, when execution is in the operating system, with user state

already saved to memory. If the OS decides a switch is in order, it powers up the

new core, triggers a cache flush to save all dirty cache data to the shared L2, and

signals the new core to start at a predefined OS entry point. The new core would

then power down the old core and return from the timer interrupt handler. The

user state saved by the old core would be loaded from memory into the new core

at that time, as a normal consequence of returning from the operating system.

50

Alternatively, we could switch to different cores at the granularity of the entire

application, possibly chosen statically. In this study, we consider both these

options.

In this work, we assume that unused cores are completely powered down,

rather than left idle. Thus, unused cores suffer no static leakage or dynamic

switching power. This does, however, introduce a latency for powering a new

core up. We estimate that a given processor core can be powered up in approxi-

mately one thousand cycles of the 2.1GHz clock. This assumption is based on the

observation that when we power down a processor core we do not power down the

phase-lock loop that generates the clock for the core. Rather, in our multi-core

architecture, the same phase-lock loop generates the clocks for all cores. Conse-

quently, the power-up time of a core is determined by the time required for the

power buses to charge and stabilize. In addition, to avoid injecting excessive noise

on the power bus bars of the multi-core processor, we assume a staged power up

would be used.

In addition, our experiments confirm that switching cores at operating-

system timer intervals ensures that the switching overhead has almost no impact

on performance, even with the most pessimistic assumptions about power-up

time, software overhead, and cache cold start effects. However, these overheads

are still modeled in our experiments.

IV.D Evaluation Methodology

This section discusses the various methodological challenges of this re-

search, including modeling the power, the real estate, and the performance of the

heterogeneous multi-core architecture.

51

IV.D.1 Modeling of CPU Cores

The cores we simulate are roughly modeled after cores of EV4 (Alpha

21064), EV5 (Alpha 21164), EV6 (Alpha 21264) and EV8-. EV8- is a hypothetical

single-threaded version of EV8 (Alpha 21464). The data on the resources for EV8

was based on predictions made by Joel Emer [44] and Artur Klauser [79], conver-

sations with people from the Alpha design team, and other reported data [39, 100].

The data on the resources of the other cores are based on published literature on

these processors [17, 18, 19].

The multi-core processor is assumed to be implemented in a 0.10 micron

technology. The cores have private first-level caches, and share an on-chip 3.5

MB 7-way set-associative L2 cache. At 0.10 micron, this cache will occupy an

area just under half the die size of the Pentium 4. All the cores are assumed

to run at 2.1GHz. This is the frequency at which an EV6 core would run if its

600MHz, 0.35 micron implementation was scaled to a 0.10 micron technology.

In the Alpha design, the amount of work per pipe stage was relatively constant

across processor generations [28, 40, 44, 52]; therefore, it is reasonable to assume

they can all be clocked at the same rate when implemented in the same technology

(if not as designed, processors with similar characteristics certainly could). The

input voltage for all the cores is assumed to be 1.2V.

Note that while we took care to model real architectures that have

been available in the past, we could consider these as just initial sample design

points in the continuum of processor designs that could be integrated into a

heterogeneous multiple-core architecture. These existing designs already display

the diversity of performance and power consumption desired. However, a custom

or partially custom design would have much greater flexibility in ensuring that

the performance and power space is covered in the most appropriate manner. We

discuss custom designs in Chapter V.

52

Table IV.1: Configuration of the cores used for power evaluation of heterogeneous

multi-cores

Processor EV4 EV5 EV6 EV8-

Issue-width 2 4 6 (OOO) 8 (OOO)

I-Cache 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way

D-Cache 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way

Branch Pred. 2KB,1-bit 2K-gshare hybrid 2-level hybrid 2-level (2X EV6 size)

Number of MSHRs 2 4 8 16

Table IV.D.1 summarizes the configurations that were modeled for var-

ious cores. All architectures are modeled as accurately as possible, given the

parameters in Table IV.D.1, on a highly detailed instruction-level simulator.

However, we did not faithfully model every detail of each actual architecture;

we were most concerned with modeling the approximate spaces each core covers

in our complexity/performance continuum.

Specific instances of deviations from exact design parameters include

the following. Associativity of the EV8- caches is double the associativity of

equally-sized EV6 caches. EV8- uses a tournament predictor double the size of

the EV6 branch predictor. All the caches are assumed to be non-blocking, but

the number of MSHRs is assumed to double with successive cores to adjust to

increasing issue width. All the out-of-order cores are assumed to have big enough

re-order buffers and large enough load/store queues to ensure no conflicts for

these structures.

The various miss penalties and L2 cache access latencies for the simu-

lated cores were determined using CACTI. CACTI [119] provides an integrated

model of cache access time, cycle time, area, aspect ratio, and power. To calcu-

late the penalties, we used CACTI to get access times and then added one cycle

each for L1 miss detection, going to L2, and coming from L2. For calculating the

53

L2 access time, we assume that the L2 data and tag access are serialized so that

the data memories don’t have to be cycled on a miss and only the required set is

cycled on a hit. Memory latency was set to be 150ns.

IV.D.2 Modeling Power

Modeling power for this type of study is a challenge. We need to consider

cores designed over the time span of more than a decade. Power depends not

only on the configuration of a processor, but also on the circuit design style and

process parameters. Also, actual power dissipation varies with activity, though

the degree of variability again depends on the technology parameters as well as

the gating style used.

No existing architecture-level power modeling framework accounts for

all of these factors. Current power models like Wattch [30] are primarily meant

for activity-based architectural level power analysis and optimizations within a

single processor generation, not as a tool to compare the absolute power consump-

tion of widely varied architectures. We integrated Wattch into our architectural

simulator and simulated the configuration of various cores implemented in their

original technologies to get an estimate of the maximum power consumption of

these cores as well as the typical power consumption running various applications.

We found that Wattch did not, in general, reproduce published peak and typical

power for the variety of processor configurations we are using.

Therefore we use a hybrid power model that uses estimates from Wattch,

along with additional scaling and offset factors to calibrate for technology factors.

This model not only accounts for activity-based dissipation, but also accounts

for the design style and process parameter differences by relying on measured

datapoints from the manufacturers.

To solve for the calibration factors, this methodology requires peak and

54

typical power values for the actual processors and the corresponding values re-

ported by Wattch. This allows us to establish scaling factors that use the output

of Wattch to estimate the actual power dissipation within the expected range for

each core. To obtain the values for the processor cores, we derive the values from

the literature. For the corresponding Wattch values, we estimate peak power for

each core given peak activity assumptions for all the hardware structures, and

use the simulator to derive typical power consumed for SPEC2000 benchmarks.

This methodology then both reproduces published results and scales

reasonably accurately with activity. While this is not a perfect power model, it

will be far more accurate than using Wattch alone, or relying simply on reported

average power.

Now we detail the methodology for estimating peak power dissipation

of the cores. Table IV.D.2 shows our power and area estimates for the cores. We

start with the peak power data of the processors obtained from data sheets and

conference publications [17, 18, 19, 39, 79]. To derive the peak power dissipation

in the core of a processor from the published numbers, the power consumed in

the L2 caches and at the output pins of the processor must be subtracted from

the published value. Power consumption in the L2 caches under peak load was

determined using CACTI, starting by finding the energy consumed per access and

dividing by the effective access time. Details on bitouts, the extent of pipelining

during accesses, etc. were obtained from data sheets (except for EV8-). For the

EV8 L2, we assume 32 byte (288 bits including ECC) transfers on reads and

writes to the L1 cache. We also assume the L2 cache is doubly pumped.

The power dissipation at the output pins is calculated using the formula:

P = (1/2)CV 2f .

The values of V (bus voltage), f (effective bus frequency) and C (load

capacitance) were obtained from data sheets. Effective bus frequency was calcu-

55

lated by dividing the peak bandwidth of the data bus by the maximum number

of data output pins which are active per cycle. The address bus was assumed

to operate at the same effective frequency. For processors like the EV4, the ef-

fective frequency of the bus connecting to the off-chip cache is different from the

effective frequency of the system bus, so power must be calculated separately for

those buses. We assume the probability that a bus line changes state is 0.5. For

calculating the power at the output pins of EV8, we used the projected values for

V and f. We assumed that half of the pins are input pins. Also, we assume that

pin capacitance scales as the square root of the technology scaling factor. Due

to reduced resources, we assumed that the EV8- core consumes 80% of the cal-

culated EV8 core-power. This reduction is primarily due to smaller issue queues

and register files. The power data was then scaled to the 0.10 micron process.

For scaling, we assumed that power dissipation varies directly with frequency,

quadratically with input voltage, and is proportional to feature-size.

The second column in Table IV.D.2 summarizes the power consumed

by the cores at 0.10 micron technology. As can be seen from the table, the EV8-

core consumes almost 20 times the peak power and more than 80 times the real

estate of the EV4 core.

CACTI was also used to derive the energy per access of the shared L2

cache, for use in our simulations. We also estimated power dissipation at the

output pins of the L2 cache due to L2 misses. For this, we assume 400 output

pins. We assume a load capacitance of 50pF and a bus voltage of 2.5V. Again,

an activity factor of 0.5 for bit-line transitions is assumed. We also ran some

experiments with a detailed model of off-chip memory access power, but found

that the level of off-chip activity is highly constant across cores, and did not

impact our results.

Values for typical power are more difficult to obtain, so we rely on a

56

Table IV.2: Power and area statistics of the Alpha cores

Core Peak-power Core-area Typical-power Range

(Watts) (mm2) (Watts) (%)

EV4 4.97 2.87 3.73 92-107

EV5 9.83 5.06 6.88 89-109

EV6 17.80 24.5 10.68 86-113

EV8- 92.88 236 46.44 82-128

variety of techniques and sources to arrive at these values.

Typical power for the EV6 and EV8- assume similar peak to typical

ratios as published data for Intel processors of the same generation (the 0.13

micron Pentium 4 [70] for EV8-, and the 0.35 micron late-release Pentium Pro [57,

73] for the EV6).

EV4 and EV5 typical power is extrapolated from these results and avail-

able thermal data [17, 18] assuming an approximately linear increase in power

variation over time, due to wider issue processors and increased application of

clock gating.

These typical values are then scaled in similar ways to the peak values

(but using measured typical activity) to derive the power for the cores alone.

Table IV.D.2 gives the derived typical power for each of our cores. Also shown,

for each core, is the range in power demand for the actual applications we run,

expressed as a percentage of typical power.

While our methodology includes several assumptions based on common

rules-of-thumb used in typical processor design, we performed several sensitivity

experiments with widely different assumptions about the range of power dissipa-

tion in the core. Our results show very little difference in the qualitative results

57

in this research. For any reasonable assumptions about the range, the power dif-

ferences between cores still dominates the power difference between applications

on the same core. Furthermore, as noted previously, the cores can be considered

as just sample design points in the continuum of processor designs that could be

integrated into a heterogeneous multiple-core architecture.

IV.D.3 Estimating Chip Area

Table IV.D.2 also summarizes the area occupied by the cores at 0.10

micron (also shown in Figure IV.1). The area of the cores (except EV8-) is

derived from published photos of the dies after subtracting the area occupied

by I/O pads, interconnection wires, the bus-interface unit, L2 cache, and control

logic. Area of the L2 cache of the multi-core processor is estimated using CACTI.

The die size of EV8 was predicted to be 400 mm2 [110]. To determine

the core size of EV8-, we subtract out the estimated area of the L2 cache (using

CACTI). We also account for reduction in the size of register files, instruction

queues, reorder buffer, and renaming tables to account for the single-threaded

EV8-. For this, we use detailed models of the register bit equivalents (rbe) [104]

for register files, reorder buffer and renaming tables at the original and reduced

sizes. The sizes of the original and reduced instruction queue sizes were esti-

mated from examination of MIPS R10000 and HP PA-8000 data [32, 84], assum-

ing that the area grows more than linear with respect to the number of entries

(num entries1.5). The area data is then scaled for the 0.10 micron process.

IV.D.4 Modeling Performance

In this study, we simulate the execution of 14 benchmarks from the

SPEC2000 benchmark suite, including 7 from SPECint and 7 from SPECfp.

These are listed in Table IV.D.4.

58

Table IV.3: Benchmarks simulated for power evaluation of heterogeneous multi-

cores

Program Description

ammp Computational Chemistry

applu Parabolic/Elliptic Partial Differential Equations

apsi Meteorology:Pollutant Distribution

art Image Recognition/Neural Networks

bzip2 Compression

crafty Game Playing:Chess

eon Computer Visualization

equake Seismic Wave Propagation Simulation

fma3d Finite-element Crash Simulation

gzip Compression

mcf Combinatorial Optimization

twolf Place and Route Simulator

vortex Object-oriented Database

wupwise Physics/Quantum Chromodynamics

59

Benchmarks are simulated using SMTSIM [127]. The simulator was

modified to simulate a multi-core processor comprising four heterogeneous cores

sharing an on-chip L2 cache and the memory subsystem. In all simulations in

this research we assume a single thread of execution running on one core at a

time. Switching execution between cores involves flushing the pipeline of the

“active” core and writing back all its dirty L1 cache lines to the L2 cache. The

next instruction is then fetched into the pipeline of the new core. The execution

time and energy of this overhead, as well as the startup effects on the new core,

are accounted for in our simulations of the dynamic switching heuristics in Sec-

tion IV.E. The simpoint tool [116] is used to determine the number of committed

instructions which need to be fast-forwarded so as to capture the representative

program behavior during simulation. After fast-forwarding, we simulate 1 billion

instructions. All benchmarks are simulated using ref inputs.

IV.E Scheduling for Power: Analysis and Results

This section examines the effectiveness of single-ISA heterogeneous multi-

core designs in reducing the power dissipation of processors. We first examine

the relative energy efficiency across cores, and how it varies by application and

phase. Later sections use this variance, demonstrating both oracle and realistic

core switching heuristics to maximize particular objective functions.

IV.E.1 Variation in Core Performance and Power

As discussed in Section IV.A, this work assumes that the performance

ratios between our processor cores is not constant, but varies across benchmarks,

as well as over time on a single benchmark. This section verifies that premise.

Figure IV.2(a) shows the performance measured in million instructions

committed per second (IPS) of one representative benchmark, applu. In the

60

figure, a separate curve is shown for each of the five cores, with each data point

representing the IPS over the preceding 1 million committed instructions.

C
o

re
-s

w
it

ch
in

g
 fo

r
en

er
g

y

EV8-

EV6

EV5

EV4

(b)

C
o

re
-s

w
it

ch
in

g
 fo

r
E

D EV8-

EV6

EV5

EV4

(c)

0

0.4

0.8

1.2

1.6

2

1 201 401 601 801

Committed instructions (in millions)
(a)

IP
S

 (i
n

m
ill

io
ns

)

EV8-

EV6

EV5
EV4

Figure IV.2: (a) Performance of applu on the four cores (b) Oracle switching for

energy (c) Oracle switching for energy-delay product.

With applu, there are very clear and distinct phases of performance on

each core, and the relative performance of the cores varies significantly between

these phases. Nearly all programs show clear phased behavior, although the

frequency and variety of phases varies significantly.

If relative performance of the cores varies over time, it follows that en-

61

0

0.04

0.08

0.12

0.16

0.2

1 201 401 601 801

Committed instructions (in millions)

EV4

EV5

EV6

EV8-

Figure IV.3: applu energy efficiency. IPS2/W varies inversely with energy-delay

product

62

ergy efficiency will also vary. Figure IV.3 shows one metric of energy efficiency

(defined in this case as IPS2/Watt) of the various cores for the same benchmark.

IPS2/Watt is merely the inverse of Energy-Delay product. Energy-Delay prod-

uct [53], as the name suggests, is the product of average energy taken up by a

instruction during its execution and the time of execution. The lower the Energy-

Delay product, the more efficient a core is. As can be seen, the relative value of

the energy-delay product among cores, and even the ordering of the cores, varies

from phase to phase.

IV.E.2 Oracle Heuristics for Dynamic Core Selection

This section examines the limits of power and efficiency improvements

possible with a heterogeneous multi-core architecture. The ideal core-selection

algorithm depends heavily on the particular goals of the architecture or appli-

cation. This section demonstrates oracle algorithms that maximize two sample

objective functions. The first optimizes for energy efficiency with a tight perfor-

mance threshold. The second optimizes for energy-delay product with a looser

performance constraint.

These algorithms assume perfect knowledge of the performance and

power characteristics at the granularity of intervals of one million instructions

(corresponding roughly to an OS time-slice interval). It should be noted that

choosing the core that minimizes energy or the energy-delay product over each

interval subject to performance constraints does not give an optimal solution for

the global energy or energy-delay product; however, the algorithms do produce

good results.

The first oracle that we study seeks to minimize the energy per com-

mitted instruction (and thus, the energy used by the entire program). For each

interval, the oracle chooses the core that has the lowest energy consumption,

63

given the constraint that performance has always to be maintained within 10%

of the EV8- core for each interval. This constraint assumes that we are willing to

give up performance to save energy but only up to a point. Figure IV.2(b) shows

the core selected in each interval for applu.

For applu, we observe that the oracle chooses to switch to EV6 in several

phases even though EV8- performs better. This is because EV6 is the less power-

consuming core and still performs within the threshold. The oracle even switches

to EV4 and EV5 in a small number of phases. Table IV.E.2 shows the results for

all benchmarks. In this, and all following results, performance degradation and

energy savings are always given relative to EV8- performance. As can be seen,

this heuristic achieves an average energy reduction of 38% (see column 8) with less

than 4% average performance degradation (column 9). Five benchmarks (ammp,

fma3d, mcf, twolf, crafty) achieve no gain because switching was denied by the

performance constraint. Excluding these benchmarks, the heuristic achieves an

average energy reduction of 60% with about 5% performance degradation.

Our second oracle utilizes the energy-delay product metric. The energy-

delay product seeks to characterize the importance of both energy and response

time in a single metric, under the assumption that they have equal importance.

Our oracle minimizes energy-delay product by always selecting the core that

maximizes IPS2/Watt over an interval. We again impose a performance thresh-

old, but relax it due to the fact that energy-delay product already accounts for

performance degradation. In this case, we require that each interval maintains

performance within 50% of EV8-.

Figure IV.2(c) shows the cores chosen for applu. Table IV.E.2 shows the

results for all benchmarks. As can be seen, the average reduction in energy-delay

is about 63%; the average energy reductions are 73% and the average performance

degradation is 22%. All but one of the fourteen benchmarks have fairly significant

64

(47% to 78%) reductions in energy-delay savings. The corresponding reductions

in performance ranges from 4% to 45%. As before, switching activity and the

usage of the cores varies. This time, EV8 never gets used. EV6 emerges as

the dominant core. Given our relaxed performance constraint, there is a greater

usage of the lower-power cores compared to the previous experiment.

Both Tables IV.E.2 and IV.E.2 also show results for Energy-Delay2 [135]

improvements. Improvements are 35-50% on average. This is instructive because

chip-wide voltage/frequency scaling can do no better than break even on this

metric, demonstrating that this approach has the potential to go well beyond

the capabilities of that technique. In other experiments specifically targeting the

ED2 metric (again with the 50% performance threshold), we saw 53.3% reduction

in energy-delay2 with 14.8% degradation in performance.

IV.E.3 Static Core Selection

This section examines the necessity of dynamic switching between cores

by measuring the effectiveness of an oracle-based static assignment of benchmark

to core (for just one of our sample objective functions). This models a system

that accurately selects a single core to run for the duration of execution, perhaps

based on compiler analysis, profiling, past history, or simple sampling.

Table IV.6 summarizes the results when a static oracle selects the best

core for energy. As in the earlier dynamic results, a performance threshold (this

time over the duration of the benchmark) is applied. EV6 is the only core other

than EV8 which gets used. This is because of the stringent performance con-

straint. Average energy savings is 32%. Excluding the benchmarks which remain

on EV8, average energy savings is 74.3%. Average performance degradation

is 2.6%. This low performance loss leads to particularly high savings for both

energy-delay and energy-delay2. Average energy savings is 31% and average

65

Table IV.4: Summary for dynamic oracle switching for energy on heterogeneous

multi-cores
Benchmark Total % of instructions per core Energy ED ED2 Perf.

switches EV4 EV5 EV6 EV8- Savings(%) Savings(%) Savings(%) Loss (%)

ammp 0 0 0 0 100 0 0 0 0

applu 27 2.2 0.1 54.5 43.2 42.7 38.6 33.6 7.1

apsi 2 0 0 62.2 37.8 27.6 25.3 22.9 3.1

art 0 0 0 100 0 74.4 73.5 72.6 3.3

equake 20 0 0 97.9 2.1 72.4 71.3 70.1 3.9

fma3d 0 0 0 0 100 0 0 0 0

wupwise 16 0 0 99 1 72.6 69.9 66.2 10.0

bzip 13 0 0.1 84.0 15.9 40.1 38.7 37.2 2.3

crafty 0 0 0 0 100 0 0 0 0

eon 0 0 0 100 0 77.3 76.3 75.3 4.2

gzip 82 0 0 95.9 4.1 74.0 73.0 71.8 3.9

mcf 0 0 0 0 100 0 0 0 0

twolf 0 0 0 0 100 0 0 0 0

vortex 364 0 0 73.8 26.2 56.2 51.9 46.2 9.8

Average 1(median) 0.2% 0% 54.8% 45.0% 38.5% 37.0% 35.4% 3.4%

Table IV.5: Summary for dynamic oracle switching for energy-delay on hetero-

geneous multi-cores

Benchmark Total % of instructions per core Energy-delay Energy Energy-delay2 Perf.

switches EV4 EV5 EV6 EV8- Savings(%) Savings(%) Savings(%) Loss (%)

ammp 0 0 0 100 0 63.7 70.3 55.7 18.1

applu 12 32.3 0 67.7 0 69.8 77.1 59.9 24.4

apsi 0 0 0 100 0 60.1 69.1 48.7 22.4

art 619 65.4 0 34.5 0 78.0 84.0 69.6 27.4

equake 73 55.8 0 44.2 0 72.3 81.0 59.2 31.7

fma3d 0 0 0 100 0 63.2 73.6 48.9 28.1

wupwise 0 0 0 100 0 68.8 73.2 66.9 10.0

bzip 18 0 1.2 98.8 0 60.5 70.3 47.5 24.8

crafty 0 0 0 100 0 55.4 69.9 33.9 32.5

eon 0 0 0 100 0 76.2 77.3 75.3 4.2

gzip 0 0 0 100 0 74.6 75.7 73.5 4.2

mcf 0 0 0 100 0 46.9 62.8 37.2 24.3

twolf 0 0 0 100 0 26.4 59.7 -34.2 45.2

vortex 0 0 0 100 0 68.7 73.0 66.7 9.9

Average 0(median) 11.0% 0.1% 88.9% 0% 63.2% 72.6% 50.6% 22.0%

66

Table IV.6: Oracle heuristic for static core selection on heterogeneous multi-cores

– energy metric. Rightmost two columns are for dynamic selection

Static Selection Dynamic Selection

Benchmark Core Energy Energy-delay Energy-delay2 Perf Energy Perf.

savings (%) savings (%) savings (%) loss (%) savings(%) loss (%)

ammp EV8- None None None None 36.1 10.0

applu EV8- None None None None 49.9 10.0

apsi EV8- None None None None 42.9 10.0

art EV6 74.4 73.5 72.6 3.3 75.7 10.0

equake EV6 73.4 72.3 70.8 4.5 74.4 10.0

fma3d EV8- None None None None 28.1 10.0

wupwise EV6 73.2 70.5 66.9 10.0 49.5 10.0

bzip EV8- None None None None 47.7 10.0

crafty EV8- None None None None 17.6 10.0

eon EV6 77.3 76.3 75.3 4.2 77.3 9.8

gzip EV6 75.7 74.6 73.5 4.3 76.0 10.0

mcf EV8- None None None None 19.9 10.0

twolf EV8- None None None None 8.1 10.0

vortex EV6 73.0 70.3 66.7 9.9 52.0 10.0

Average - 31.9% 31.3% 30.4% 2.6% 46.8% 10.0

energy-delay2 savings is 30%.

Also shown is a corresponding dynamic technique. For a fair compari-

son, we apply a global runtime performance constraint rather than a per-interval

constraint. That is, any core can be chosen in an interval as long as the accumu-

lated runtime up to this point (including all core choices made on earlier intervals)

remains within 10% of the EV8- alone. This gives a more fair comparison with

the static technique.

IV.E.4 Realistic Dynamic Switching Heuristics

This section examines the extent to which the energy benefits in the

earlier sections can be achieved with a real system implementation that does

not depend on oracular future knowledge. We do, however, assume an ability

to track both the accumulated performance and energy over a past interval.

This functionality either already exists or is easy to implement. This section is

intended to be an existence proof of effective core selection algorithms, rather

67

than a complete evaluation of the switching design space. We only demonstrate

a few simple heuristics for selecting the core to run on. The heuristics seek to

minimize overall energy-delay product during program execution.

Our previous oracle results were idealized not only with respect to

switching algorithms, but also ignored the cost of switching (power-up time,

flushing dirty pages to the L2 cache and experiencing cold-start misses in the

new L1 cache and TLB) both in performance and power. The simulations in this

section account for both, although our switching intervals are long enough and

switchings infrequent enough that the impact of both effects is under 1%.

In this section, we measure the effectiveness of several heuristics for

selecting a core. The common elements of each of the heuristics are these: every

100 time intervals (one time interval consists of 1 million instructions in these

experiments), one or more cores are sampled for five intervals each (with the

results during the first interval ignored to avoid cold start effects). Based on

measurements done during sampling, the heuristic selects one core. For the case

when one other core is sampled, the switching overhead is incurred once if the

new core is selected, or twice if the old core is chosen. The switching overhead is

greater if more cores are sampled. The dynamic heuristics studied here are:

• neighbor. One of the two neighboring cores in the performance continuum

is randomly selected for sampling. A switch is made if that core has lower

energy-delay over the sample interval than the current core over the last run

interval.

• neighbor-global. Similar to neighbor, except that the selected core is the

one that would be expected to produce the lowest accumulated energy-delay

product to this point in the application’s execution. In some cases this

is different than the core that minimizes the energy-delay product for this

interval.

68

• random. One other randomly-chosen core is sampled, and a switch is made

if that core has lower energy-delay over the sample interval.

• all All other cores are sampled.

0

0.2

0.4

0.6

0.8

1

neig
hbour

neig
hbor-g

lo
bal

ra
ndom all

Dyn
am

ic
ora

cle

N
o

rm
al

iz
ed

 V
al

u
e

(w
rt

 E
V

8-
)

Energy

Performance(1/execution-time)

Energy-delay

Figure IV.4: Results for realistic switching heuristics for heterogeneous multi-

cores - the last one is a constraint-less dynamic oracle

The results are shown in Figure IV.4. The results are all normalized

to EV8- values. This figure also includes oracle results for dynamic switching

69

based on the energy-delay metric when core selection is not hampered with per-

formance constraints. Lower bars for energy and energy-delay, and higher bars

for performance are desirable.

Our heuristics achieve up to 93% of the energy-delay gains achieved

by the oracle-based switcher, despite modeling the switching overhead, sampling

overhead, and non-oracle selection. The performance degradation on applying

our dynamic heuristics is, on average, less than the degradation found by the

oracle-based scheme. Also, although not shown in the figure, there is a greater

variety in core-usage between applications.

It should be noted that switching for this particular objective function

is not heavy; thus, heuristics that find the best core quickly, and minimize sam-

pling overhead after that, tend to work best. The best heuristic for a different

objective function, or a dynamically varying objective function may be different.

These results do show, however, that for a given objective function, very effective

realtime and predictive core switching heuristics can be found.

IV.E.5 Practical heterogeneous architectures

Although our use of existing cores limits design and verification over-

heads, these overheads do scale with the number of distinct cores supported.

Some or our results indicate that in specific instances, two cores can introduce

sufficient heterogeneity to produce significant gains. For example the (minimize

energy, maintain performance within 10%) objective function relied heavily on the

EV8- and the EV6 cores. The (energy-delay, performance within 50%) objective

function favored the EV6 and EV4. However, if the objective function is allowed

to vary over time, or if the workload is more diverse than what we model, wider

heterogeneity than 2 cores will be useful. Presumably, other objective functions

than those we model may also use more than 2 cores.

70

IV.F Summary

We introduce and seek to gain some insights into the energy benefits

available for single-ISA heterogeneous multi-core architectures. The particular

opportunity examined is a single application switching among cores to optimize

some function of energy and performance.

We show that a sample heterogeneous multi-core design with four complexity-

graded cores has the potential to increase energy efficiency (defined as energy-

delay product, in this case) by a factor of three, in one experiment, without

dramatic losses in performance. Energy efficiency improvements significantly

outdistance chip-wide voltage/frequency scaling. It is shown that most of these

gains are possible even by using as few as two cores.

These results indicate that not only is there significant potential for this

style of architecture, but that reasonable runtime heuristics for switching cores,

using limited runtime information, can achieve most of that potential.

IV.G Acknowledgment

The text of Chapter IV is in part a reprint of the material as it appears

in the proceedings of the Thirty-sixth International Symposium on Microarchi-

tecture (pp81-92, December 2003). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed the

research which forms the basis for Chapter IV.

V

Holistic Design for Adaptability:

Designing Heterogeneous

Multi-cores From the Ground Up

This chapter first provides an overview of other proposals related to

heterogeneous multi-cores and then discusses a holistic design methodology for

heterogeneous multi-core architectures.

V.A Overview of Related Proposals

There have been other proposals studying the advantages of on-chip

heterogeneity. This chapter provides an overview of other work directly dealing

with heterogeneous multi-core architectures. We also discuss previous work with

similar goals – i.e., adapting to workload diversity to improve processor efficiency.

Morad, et al. [102] explore the theoretical advantages of placing asym-

metric core clusters in multiprocessor chips. The asymmetric processor executed

the serial phases of a parallel program on large high-performance cores, while

the parallel phases get executed on the simpler, smaller cores. They show that

71

72

asymmetric core clusters are expected to achieve higher performance per area and

higher performance for a given power envelope. The analysis is extended in [103]

and experimental results presented through emulation of such processors.

Annavaram, et al. [23] evaluate the benefits of heterogeneous multipro-

cessing to minimize the execution times of multi-threaded programs containing

nontrivial parallel and sequential phases, while keeping the CMP’s total power

consumption within a fixed budget. Whenever a parallel program is in its serial

phase, it is executed on a core running at high frequency. During the parallel

phases, threads are executed on cores after reducing their frequency to meet the

power budget. They report significant speedups over a a chip multiprocessor

where all the cores are on during the entire execution of the program and their

frequency is set constant to meet the power budget.

Balakrishanan, et al. [25] seek to understand the impact of such an ar-

chitecture on software. They show, using a hardware prototype, that asymmetry

can have significant impact on the performance, stability, and scalability of a

wide range of commercial applications. They also demonstrate that in addition

to heterogeneity-aware kernels, several commercial applications may themselves

need to be aware of heterogeneity at the hardware level.

The energy benefits of heterogeneous multi-core architectures is also ex-

plored by Ghiasi and Grunwald [50]. They consider single-ISA, heterogeneous

cores of different frequencies belonging to the x86 family for controlling the ther-

mal characteristics of a system. Applications run simultaneously on multiple cores

and the operating system monitors and directs applications to the appropriate

job queues. They report significantly better thermal and power characteristics

for heterogeneous processors.

Grochowsky, et al. [55] compare voltage/frequency scaling, asymmet-

ric (heterogeneous) cores, variable-sized cores, and speculation as means to re-

73

duce the energy per instruction (EPI) during the execution of a program. They

find that the EPI range for asymmetric chip-multiprocessors using x86 cores was

4-6X, significantly more than the next best technique (which incidentally was

voltage/frequency scaling).

There have also been proposals for multi-ISA heterogeneous multi-core

architectures. The proposed Tarantula processor [45] is one such example of inte-

grated heterogeneity. It consists of a large vector unit unit sharing the die with an

EV8 core. The Alpha ISA is extended to include vector instructions that operate

on the new architectural state. The unit is targeted towards applications with

high data-level parallelism. IBM Cell [75] is another example of a heterogeneous

chip multiprocessor with cores belonging to different ISA (more details on cell in

Section II.B).

Having custom ISAs for different kinds of workloads can result in po-

tentially higher benefits as compared to single-ISA heterogeneous multi-core ar-

chitectures, especially when an “exact” workload-to-core mapping is possible.

However, the downside of this approach is that little design reuse between the

cores and also a poor resource utilization when the application mix contains a

balance different than that ideally suited to the underlying heterogeneous archi-

tecture. Single-ISA heterogeneous multi-core architectures do not have the same

disadvantages because of the use of off-the-shelf cores which can all execute the

same code, though with different performance. Having the same ISA also enables

them to adjust to dynamic changes in program behavior or workload mix. Also,

compilation effort would arguably be larger for multi-ISA chips.

The main objective of heterogeneous multi-core architectures is to adapt

to workload diversity. An alternative way of handling different amounts of

parallelism is by configuring the processor to the demands of the workload.

There have been several papers on processor reconfiguration [22, 46, 49, 56, 71,

74

97, 99, 54, 108, 72, 114] for minimizing power. Gating-based power optimiza-

tions [22, 46, 49, 56, 71, 97, 99] provide the option to turn off (gate) portions of

the processor core that are not useful for the currently executing phases of the

workload. Similarly, voltage and frequency scaling reduces the parameters of the

entire core [54, 108] or portions of the core [72, 114] to adapt to reduced workload

demands.

However, for all these techniques, benefits are limited by the granularity

of structures that can be gated or scaled down, and the inability to change the

overall size and complexity of the processor. Also, these designs are still suscepti-

ble to static leakage inefficiencies. Furthermore, voltage and frequency scaling is

fundamentally limited by the process technology in which the processor is built.

Heterogeneous multi-core designs address both these deficiencies.

Single-ISA heterogeneous multi-core architecture also enhance through-

out by addressing both low-TLP and high-TLP using the same architecture.

There have been other architectures proposed for the same purpose. Speculative

multithreading architectures [98, 122, 121, 134, 35, 60, 129, 59] which employ

additional contexts of a multi-context processor(chip multiprocessors or simul-

taneously multithreaded processors) to enhance single-thread performance fall

into this category. When TLP is high, all the contexts are used to run different

threads; when TLP is low, the spare contexts are used to run speculative/helper

threads to enhance the single-thread performance of the main thread(s). Single-

ISA heterogeneous architectures differ from the speculative multithreading ar-

chitectures in that when TLP is low, single-thread performance is enhanced by

running the application(s) on more powerful processors and hence ensuring better

performance instead of relying on the goodness of speculative/helper threads to

accelerate the main thread. However, we believe that speculative multithreading

is a complimentary approach and one could envision heterogeneous speculative

75

multithreading architectures where the speculative threads run on the slower pro-

cessors while the primary threads run on the more powerful ones. Little work has

been done previously on reconfiguration for multi-purpose processors for maxi-

mizing throughput. The TRIPS [112] architecture contains mechanisms that

enable the processing cores and the on-chip memory system to be configured and

combined in different modes for different granularities and types of parallelism.

To adapt to small and large-grain concurrency, the architecture contains some

number out-of-order, wide-issue Grid Processor cores, which can be partitioned

when easily extractable fine-grained parallelism exists. Our work is different in

that we primarily target commodity heterogeneity with no special demands on

the compiler or the programmer. Also, we exploit not only inter-thread diversity

by matching each thread to a right core but also intra-thread diversity by dynam-

ically switching the applications depending on the current job-execution profile.

The potential and overheads for exploiting intra-thread diversity are unclear for

TRIPS architectures.

Overall, having heterogeneous processor cores provides potentially greater

power savings compared to previous approaches and greater flexibility and scal-

ability of architecture design. Moreover, these previous approaches can still be

used in a multi-core processor to greater advantage.

V.B Benefits of Ground-up Design

While the previous proposals demonstrated the benefits of heterogeneity,

they gave no insight into what constitutes, or how to arrive at, a good hetero-

geneous design. Previous work (including Sections III.B and IV of this thesis)

assumed a given heterogeneous architecture. More specifically, those architec-

tures were composed of existing architectures, either different generations of the

same processor family [90, 87, 50, 55], or voltage and frequency scaled editions

76

of a single processor [23, 25, 51, 81]. While these architectures surpassed similar

homogeneous designs, they failed to reach the full potential of heterogeneity, for

three reasons. First, the use of pre-existing designs presents low flexibility in

choice of cores. Second, core choices maintain a monotonic relationship, both in

design and performance – for example, the most powerful core is bigger or more

complex in every dimension and the performance-ordering of the cores is the same

for every application. Third, all cores considered perform well for a wide variety

of applications — we show that the best heterogeneous designs are composed of

specialized core architectures.

A heterogeneous architecture, and particularly a fully custom heteroge-

neous processor not necessarily composed of pre-existing cores, incurs additional

costs in design, verification, and testing. A key goal of the research presented

in this chapter is to evaluate the full benefits of these architectures, so that this

tradeoff can be more appropriately evaluated by processor manufacturers.

In actually deriving the best designs for a variety of multiprogramming

workloads, power and area constraints, level of threading, etc., this chapter makes

three significant contributions. First, it re-evaluates the benefits of heterogeneity

in power and area efficient architectures, showing new benefits and higher gains.

Performance improvements of up to 40% are shown. Second, it demonstrates

methodologies for arriving at good heterogeneous designs – we examine both those

that find the best designs but do not scale well to larger design spaces, and those

that scale yet still find good architectures. Third, by actually finding the best

designs across many different assumptions and constraints, it identifies a number

of key principles critical to the effective design of future chip multiprocessors.

77

V.C From Workloads to Multi-core Design

The goal of this research is to identify the characteristics of cores that

combine to form the best heterogeneous architectures, and also demonstrate prin-

ciples for designing such an architecture. Such a methodology would start with

a set of applications and a set of constraints on the processor. It should then

identify the best architecture for that workload, given some objective function to

evaluate the goodness of an architecture.

Because this methodology requires that we accurately reflect the wide

diversity of applications (their parallelism, their memory behavior), running on

widely varying architectural parameters, there is no real shortcut to using simu-

lation to characterize these combinations.

The design space for even a single processor is large, given the flexibility

to change various architectural parameters; however, the design space explodes

when considering the combined performance of multiple different cores on arbi-

trary permutations of the applications. Hence, we make some simplifying as-

sumptions that make this problem tractable so that we can navigate through the

search space faster; however, we show that the resulting methodology still results

in the discovery of very effective multi-core design points.

First, we assume that the performance of individual cores is separable –

that is, that the performance of a four-core design, running four applications, is

the sum (or the sum divided by a constant factor) of the individual cores running

those applications in isolation. This is an accurate assumption if the cores do

not share L2 caches or memory controllers (which we validate in Section V.G).

However, we also show in Section V.G that this methodology still makes good

design decisions with shared L2 caches for our workloads. This assumption dra-

matically accelerates the search because now the single-thread performance of

each core (found using simulation) can be used to estimate the performance of

78

the processor as a whole without the need to simulate all 4-thread permutations.

Since we are interested in the highest performance that a processor

can offer, we assume good static scheduling of threads to cores. Thus, the per-

formance of four particular threads on four particular cores is the performance

of the best static mapping. However, this actually represents a lower bound on

performance. Section III.B has shown that the ability to migrate threads dynam-

ically during execution only increases the benefits of heterogeneity as it exploits

intra-thread diversity – we show in Section V.F that it continues to hold true for

the best heterogeneous designs that we come up with under the static scheduling

assumption.

To further accelerate the search, we consider only major blocks to be

configurable, and only consider discrete points. For example, we consider 2 in-

struction queue sizes (rather than all the intermediate values) and 4 cache con-

figurations (per cache). But we consider only a single branch predictor, because

the area/performance tradeoffs of different sizes had little effect in our experi-

ments. Values that are expected to be correlated (e.g., size of re-order buffer

and number of physical registers) are scaled together instead of separately. This

methodology might appear to be crude for an important commercial design, but

we believe that even in that environment this methodology would find a design

very much in the neighborhood of the best design. Then, a more careful analysis

could be done of the immediate neighborhood, considering structure sizes at a

finer granularity and considering particular choices for smaller blocks we did not

vary.

We only consider and compare processors with a fixed number (4) of

cores. It would be interesting to also relax that constraint in our designs, but

we did not do so for the following reasons. Accurate comparisons would be

more difficult, because the interconnect and cache costs would vary. Second,

79

it is shown both in this work (Section V.F) and in previous work (III.B) that

heterogeneous designs are much more tolerant than homogeneous when running

a different number of threads than the processor is optimized for. However,

the methodology shown here need only be applied multiple times (once for each

possible core count) to fully explore the larger design space, assuming that an

accurate model of the off-core resources was available.

The above assumptions allow us to model performance for various com-

binations of cores for various permutations of our benchmarks, thus evaluating

the expected performance of the possible homogeneous and heterogeneous pro-

cessors for various area and power budgets.

To search through the design space for a given set of workloads we follow

two techniques – exhaustive search and efficient search. Our algorithm for finding

the best design typically is an exhaustive search of all core combinations, account-

ing for every permutation of our benchmarks on each combination. This approach

ensures that we do indeed find the best combination in each case. While this ap-

proach works for our workloads and architectural variables, considering more

benchmarks and more architectural options will quickly make the exhaustive ap-

proach impractical. In Section V.F, we examine more efficient search algorithms

and quantify how closely they come to identifying the best design.

V.D Customizing Cores to Workloads

One of the biggest advantages of creating a heterogeneous processor from

the ground up is that the cores can be chosen in an unconstrained manner as long

as the processor budgetary constraints are satisfied. We define monotonicity to

be a property of a multi-core architecture where there is a total ordering among

the cores in terms of performance and this ordering remains the same for all

applications. For example, a multiprocessor consisting of EV5 and EV6 cores

80

is a monotonic multiprocessor. This is because EV6 is strictly superior to EV5

in terms of hardware resources and virtually always performs better than EV5

for a given application given the same cycle time and latencies. Similarly, for a

multi-core architecture with identical cores, if the voltage/frequency of a core is

set lower than the voltage/frequency of some other core, it will always provide

less performance, regardless of application. Fully customized monotonic designs

represent the upper bound (albeit a high one) on the benefits possible through

previously proposed heterogeneous architectures.

As we show in this chapter, monotonic multiprocessors may not provide

the “best fit” for various workloads and hence result in inefficient mapping of

applications to cores. For example, in the results shown in [87], mcf, despite

having very low ILP, consistently gets mapped to the EV6 or EV8- core for

various energy-related objective functions, because of the larger caches on these

cores. Yet it fails to take advantage of the complex execution capabilities of these

cores, and thus still wastes energy unnecessarily.

Doing a custom design of a heterogeneous multi-core architecture allows

the monotonicity constraint to be relaxed. That is, it is possible for a particular

core of the multiprocessor to be the highest performing core for some application

but not for others. For example, if one core is in-order, scalar, with 8KB caches,

and another core is out-of-order, dual-issue, with 16KB caches, applications will

always run best on the latter. However, if the scalar core had 64KB L1 caches,

then it might perform better for applications with low ILP and large working sets,

while the other would likely be best for jobs with high ILP and smaller working

sets.

The advantage of non-monotonicity is that now different cores on the

same die can be customized to different classes of applications, which was not the

case with previously studied designs.

81

V.E Methodology

This section discusses the various methodological challenges of this study,

including modeling power, real estate, and performance of the heterogeneous

multi-core architectures.

V.E.1 Modeling of CPU Cores

For all our studies in this chapter, we model 4-core multiprocessors

assumed to be implemented in 0.10 micron, 1.2V technology. Each core on a

multiprocessor, either homogeneous or heterogeneous, has a private L2 cache and

each L2 bank has a corresponding memory controller. The ITRS roadmap [15]

confirms that sufficient pins are available to support four memory controllers for

the assumed technology. Assuming private L2 caches reduces the dimensions of

the design; however, we also consider a shared L2 cache (of the same total size)

in Section V.G.

We consider both in-order cores and out-of-order cores for this study.

We base our OOO processor microarchitecture model on the MIPS R10000, and

our in-order cores on the Alpha EV5 (21164). We evaluate 480 cores as possible

building blocks for constructing the multiprocessors. This represents all possible

distinct cores that can be constructed by changing the parameters listed in Ta-

ble V.E.1. The various values that were considered are listed in the table as well.

We assumed a gshare branch-predictor with 8k entries for all the cores. Out of

these 480 cores, there are 96 distinct in-order cores and 384 distinct out-of-order

cores. The number of distinct 4-core multiprocessors that can be constructed out

of 480 distinct cores is over 2.2 billion.

Other parameters that are kept fixed for all the cores are also listed in

Table V.E.1. The various miss penalties and L2 cache access latencies for the

simulated cores were determined using CACTI [119].

82

Table V.1: Various Parameters and their possible values for configuration of the

cores

Issue-width 1, 2, 4

I-Cache 8KB-DM, 16KB-2way, 32KB-4way, 64KB-4way

D-Cache 8KB-DM, 16KB-2way, 32KB-4way, 64KB-4way dual ported

FP-IntMul-ALU units. 1-1-2, 2-2-4

IntQ-fpQ (OOO) 32-16, 64-32

Int-FP PhysReg-ROB (OOO) 64-64-32, 128-128-64

L2 Cache 1MB/core, 4-way, 12cycle access

Memory Channel 533MHz, doubly-pumped, RDRAM

ITLB-DTLB 64, 28 entries

Ld/St Queue 32entries

All evaluations are done for multiprocessors satisfying a given aggregate

area and power budget for the 4 cores. We do not expect the memory and

interconnection subsystem to vary significantly with the core type for a given

number of cores. We also confirmed that the contribution of L2s to overall power

consumption did not vary significantly between four-core designs taking up the

same area, even when the total number of serviced memory requests differed.

Hence, we do not concern ourselves with the area and power consumption of

anything other than the cores for this study.

V.E.2 Modeling Power and Area

In this chapter, the area budget refers to the sum of the area of the 4

cores of a processor (the L1 cache being part of the core), and the power budget

refers to the sum of the worst case power of the cores of a processor. Specifically,

we consider peak activity (dynamic) power, as this is a critical constraint in the

architecture and design phase of a processor. Static power is not considered

explicitly in this chapter (though it is typically proportional to area, which we

do consider).

83

We model the peak activity power and area consumption of each of the

key structures in a processor core using a variety of techniques. Table V.E.2 lists

the methodology and assumptions used for estimating area and power overheads

for various structures. Table V.E.2 shows the area and power values for various

parameterized hardware structures. Notice that some of the structures listed are

for out-of-order (OOO) cores only.

Table V.2: Area and power estimation methodology and relevant assumptions

for various hardware structures. Renaming for OOO cores is assumed to be done

using RAM tables. IW refers to issue-width, WP to a write-port, and RP to a

read-port.

Structure Methodology Assumptions

L1 caches [119] Parallel data/tag access

TLBs [119],[58]

RegFiles [119],[104] 2 × IW RP, IW WP

Execution Units [58]

RenameTables [119][104] 3 × IW RP, IW WP

ROBs [119] IW RP, IW WP, 20b-entry,6b-tag

IQs(CAM arrays) [119] IW RP, IW WP, 40b-entry,8b-tag

Ld/St Queues [119] 64b-addressing,40b-data

To get total area and power estimates, we assume that the area and

power of a core can be approximated as the sum of its major pieces. In reality,

we expect that the unaccounted-for overheads will scale our estimates by constant

factors. In that case, all our results will still be valid.

Figure V.1 shows the area and power of the 480 cores used for this

study. As can be seen, the cores represent a significant range in terms of power

(4.1-16.3W) as well as area (3.3-22mm2). For this study, we consider 4-core

multiprocessors with different area and peak power budgets. There is a significant

range in the area and power budget of the 4-core multiprocessors that can be

84

Table V.3: Derived Area and Power Estimates for Processor Components

Structure Area (mm2) Power (W)

8KB-DM cache 0.4 0.638

16KB-2-way cache 0.745 1.018

32KB-4-way cache 1.495 1.744

64KB-4-way cache 2.6 1.869

64KB-4-way dual-ported cache 5.05 3.932

64-entry ITLB 0.119 0.126

128-entry ITLB 0.238 0.186

16-entry InstQ (Int/FP) 0.063, 0.203, 0.721 (IW = 1, 2, 4) 0.129, 0.266, 0.565 (IW = 1, 2, 4)

32-entry InstQ (Int/FP) 0.086, 0.273, 0.991 (IW = 1, 2, 4) 0.144, 0.301, 0.655 (IW = 1, 2, 4)

64-entry InstQ 0.16, 0.505, 2.596 (IW = 1, 2, 4) 0.186, 0.394, 0.899 (IW = 1, 2, 4)

32-entry lsQ single-port (Int/FP) 0.1 0.161

32-entry lsQ dual-ported (Int/FP) 0.319 0.333

Branch Predictor 0.2 0.3

1 ALU 0.385 0.45

1 IntMul 0.295 0.45

1 FPU 0.728 0.9

32-entry Regfile 0.1, 0.339, 1.244 (IW = 1, 2, 4) 0.212, 0.439, 0.953 (IW = 1, 2, 4)

64-entry Regfile 0.137, 0.411, 1.5 (IW = 1, 2, 4) 0.367, 0.854, 1.897 (IW = 1, 2, 4)

128-entry Regfile 0.192, 0.611, 2.15 (IW = 1, 2, 4) 0.517, 1.154, 2.788 (IW = 1, 2, 4)

32-entry RAM Rename Table 0.049, 0.176, 0.668 (IW = 1, 2, 4) 0.137, 0.284, 0.606 (IW = 1, 2, 4)

32-entry ROB 0.04, 0.158, 0.533 (IW = 1, 2, 4) 0.07, 0.157, 0.311 (IW = 1, 2, 4)

64-entry ROB 0.06, 0.218, 0.753 (IW = 1, 2, 4) 0.1, 0.209, 0.451 (IW = 1, 2, 4)

constructed out of these cores. Area can range from 13.2mm2 to 88mm2. Power

can range from 16.4W to 65.2W.

V.E.3 Modeling Performance

This section describes the workloads used for evaluation, the perfor-

mance evaluation methodology, and the evaluation metric.

All our evaluations are done for multiprogrammed workloads. Table

V.E.3 lists the ten benchmarks used for constructing workloads. Seven bench-

marks are from the SPEC suite. These benchmarks are chosen in the following

85

0

5

10

15

20

25

0 5 10 15 20

Power(W)

A
re

a(
m

m
^2

)

Figure V.1: Area and Power of the cores

way. We simulated all 26 benchmarks from the SPEC suite for 250 million cycles

using the EV5 processor model after fast-forwarding for an appropriate number

of instructions [117]. Then benchmarks were classified into processor bound or

bandwidth bound based on the number of main memory references per instruc-

tion. Seven benchmarks were then chosen from these two sets in proportion to

the occurrence of these classes of benchmarks in the SPEC suite. Hence, the

chosen SPEC benchmarks are intended to represent the entire SPEC suite. We

also chose groff, deltablue and adpcmc from the IBS, OOCSB and Mediabench

suites respectively. Choosing these three additional benchmarks recognizes the

existence of other kinds of application behavior that are not displayed by the

SPEC benchmarks, while still considering SPEC representative of a wide variety

of applications.

86

Table V.4: Benchmarks used for design space exploration of heterogeneous multi-

cores

Program Description

ammp Computational Chemistry

crafty Game Playing:Chess

eon Computer Visualization

mcf Combinatorial Optimization

twolf Place and Route Simulator

mgrid Multi-grid Solver: 3D Potential Field

mesa 3-D Graphics Library

groff Typesetting package

deltablue Constraint Hierarchy Solver

adpcmc Encoder for Adaptive Differential Pulse Code Modulation

87

Every multiprocessor is evaluated on two classes of workloads. The

all different class consists of all possible 4-threaded combinations that can be

constructed such that each of the 4 threads running at a time is different. The

all same consists of all possible 4-threaded combinations that can be constructed

such that all the 4 threads running at a time are the same. For example, a,b,c,d

is an all different workload while a,a,a,a is an all same workload. This effectively

brackets the expected diversity in any workload – including server, parallel, and

multithreaded workloads. Hence, we expect our results to be generalizable across

a wide range of environments.

As discussed before, there are over 2.2 billion distinct 4-core multipro-

cessors that can be constructed using our 480 distinct cores. We assume that the

performance of a multiprocessor is the sum of the performance of each core of

the multiprocessor, as described in Section V.C. Note that this is a reasonable

assumption (and validated in Section V.G) because each core is assumed to have

a private L2 cache as well as a memory channel. This is the same architecture

(private L2s) assumed in [67] and is supported by recent research comparing pri-

vate and shared L2 caches for multi-core architectures [91]. We also validate that

the results made with these assumptions still apply with shared L2 caches for our

benchmarks (see Section V.G).

We find the single thread performance of each application on each core.

This represents 4800 simulations. Simulations use a modified version of SMT-

SIM [127]. Scripts are used to calculate the performance of the multiprocessors

using these single-thread performance numbers.

All results are presented for the best (oracular) static mapping of appli-

cations to cores. Note that realistic dynamic mapping can do better (III.B) – we

show in Section V.F that dynamic mapping continues being useful for the best

heterogeneous designs that our methodology produces. However, evaluating 2.2

88

billion multiprocessors becomes intractable if dynamic mapping is assumed.

We use weighted speedup [120] for our evaluations. In this chapter,

weighted speedup measures the arithmetic sum of each running thread’s IPC,

divided by its IPC on the simplest core considered in this study when running

alone. The IPC is derived by running a thread for a fixed amount of time. We

believe that this metric guards against multiprocessor design points that produce

artificial speedups by simply favoring high-IPC threads.

V.F Analysis and Results

This section presents the results of our heterogeneous multi-core archi-

tecture design space search. We present these results for a variety of different area

and power constraints, allowing us to observe how the benefits of heterogeneity

vary across area and power domains. We also examine the effect of different levels

of thread level parallelism and the impact of dynamic thread switching mecha-

nisms. We quantify the gains observed due to allowing non-monotonic cores on

the processor. Last, we show that the results we observe are applicable not only

for the private L2 cache configurations we assume, but even when a shared L2

cache is considered.

V.F.1 Fixed Area Budget

This section presents results for fixed area budgets. For every fixed area

limit, a complete design space exploration is done to find the highest performing

4-core multiprocessor. In fact, for each area budget, we find the best architectures

across a range of power constraints — the best architecture overall for a given

area limit, regardless of power, will always be the highest line on the graph.

Figure V.2 shows the weighted speedup for the highest performing 4-

core multiprocessors within an area budget of 40mm2. The three lines correspond

89

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

gh
te

d
Sp

ee
du

p

<50W <40W <30W

OOO_16_16_l_s

dual-issue
IO_16_16_l,
single-issue

OOO_64_16_s_l

IO_8_16_s,
OOO_32_16_l_s,
OOO_64_32_s_s

OOO_64_64_s_s

OOO_64_32_l_s

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

gh
te

d
S

pe
ed

up

<50W <40W <30W

OOO_16_16_l_s

IO_8_8_l,
OOO_64_64_s_s

IO_8_16_l,
OOO_32_32_s_s,
OOO_64_64_s_s

IO_16_16_l,
OOO_32_16_l_s,
 OOO_32_32_l_s,
OOO_64_16_l_s

OOO_64_64_s_s

OOO_64_32_l_s

IO_8_8_l,
OOO_64_32_l_s

Figure V.2: Throughput for all-same (top) and all-different (bottom) workloads,

area budget=40mm2

to different power budgets for the cores. The top line represents the highest

performing 4-core multiprocessors with total power due to cores not exceeding

50W. The middle line corresponds to 4-core multiprocessors with total power

due to cores not exceeding 40W. The line at the bottom corresponds to 4-core

multiprocessors with total power due to cores not exceeding 30W.

Figure V.3 shows the results for different area budgets.

The performance of these 4-core multiprocessors is shown for different

amounts of on-chip diversity. One core type, for example, implies that all cores

90

on the die are of the same type, and hence refers to a homogeneous multipro-

cessor. There are two ways to construct 4-core multiprocessors with two core

types. One is when three cores are of one type and the fourth core is of another

type. Alternatively, one can have two cores of one type and the other two cores

of another type. We graph these separately, and refer to these possibilities as 2

core types (3-1) and 2 core types (2-2) respectively. Similarly, 3 core types refers

to multiprocessors with three types of cores on the die and 4 core types refers

to multiprocessors with all different cores. Note that the 4 core types result,

for example, only considers processors with four unique cores. Thus, if the best

heterogeneous configuration has two unique cores, the three-core and four-core

results will show as lower.

Performance, as discussed in the methodology section, is expressed in

terms of weighted speedup where the baseline is the performance of the simplest

core considered in this study.

The results in Figures V.3 and V.2 lead to several interesting observa-

tions. First, we notice that the advantages of diversity are lower with all same

than the all different workload, but they do exist. This is non-intuitive for our

artificially-homogeneous workload; however, we find that even these workloads

achieve their best performance when at least one of the cores is well-suited for the

application — a heterogeneous design ensures that whatever application is being

used for the homogeneous runs, such a core likely exists. For example, the best

homogeneous CMP for all same workloads for an area budget of 40mm2 and a

power budget of 30W consists of 4 single-issue OOO cores with 16KB L1 caches

and double the functional units than the simplest core. This multiprocessor does

not perform well when running applications with high cache requirements. On the

other hand, the best heterogeneous multiprocessor with 3 core types for all same

workloads for identical budgets consists of two single-issue in-order cores with

91

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<30W <20W

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<50W <40W <30W <20W

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<60W <50W <40W

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<70W <60W <50W

Figure V.3: Throughput for all-different workloads for an area budget of (left to

right) 20mm2, 30mm2, 50mm2, and 60mm2.

92

8KB ICache and 16KB DCache, one scalar OOO core with 32KB ICache, 16KB

DCache and double the functional units, and one scalar OOO core with 64KB

ICache and 32KB DCache. The three core types cover the spectrum of applica-

tion requirements better and hence result in outperforming the best homogeneous

CMP by 3.6%. In general, if there is benefit to be had from heterogeneity (as

shown in the all-different results), it typically also exists in the all same case, but

to a lesser degree.

Second, we observe that the advantages due to heterogeneity for a fixed

area budget depend largely on the power budget available — as shown by the

shape of the lines corresponding to different power budgets. In this case (Fig-

ure V.2), heterogeneity buys little additional performance with a generous power

budget (50W), but is increasingly important as the budget becomes more tightly

constrained. We see this pattern throughout our results, whenever either power

or area is constrained. What we find is that without constraints, the homoge-

neous architecture can create “envelope” cores — cores that are over-provisioned

for any single application, but able to run most applications with high perfor-

mance. For example, for an area budget of 40mm2, if the power budget is set

high (50W), the “best” homogeneous architectures consists of 4 OOO cores with

64KB ICache, 32KB DCache and double the number of functional units than the

simplest core. This architecture is able to run both the memory-bound as well

as processor-bound applications well. When the design is more constrained, we

can only meet the needs of each application through heterogeneous designs that

are customized to subsets of the applications. It is likely that in the space where

homogeneous designs are most effective, a heterogeneous design that contained

more cores would be even better; however, we did not explore this axis of the

design space.

We see these same trends in Figure V.3, which shows results for four

93

other area budgets. There is significant benefit to a diversity of cores as long as

either area or power are reasonably constrained.

The power and area budgets also determine the amount of diversity

needed for a multi-core architecture. In general, the more constrained the budget,

the more benefits are accrued due to increased diversity. For example, considering

the all different results in Figure V.2, while having 4 core types results in the best

performance when the power limit is 30W, two core types (or one) are sufficient

to get all the potential benefits for higher power limits. Similar trends can be

observed for other area budgets as well. In some of the regions where moderate

diversity is sufficient, two unique cores not only matches configurations with

higher diversity, but even beats them. In cases where higher diversity is optimal,

the gains must still be compared against the design and test costs of more unique

cores. For example, in the example above, the marginal performance of 4 core

types over the best 2-type result is 2.5%, and probably does not justify the extra

effort in this particular example.

These results do underscore the increasing importance of single-ISA het-

erogeneous multi-core architectures for current and future processor designs. As

designs become more aggressive, we will want to place more cores on the die (plac-

ing area pressure on the design), and power budgets per core will likely tighten

even more severely. Our results show that having two core types is sufficient for

getting most of the potential out of moderately power-limited designs, increased

diversity results in significantly better performance for highly power-limited de-

signs.

Even when two core types is sufficient, the best combination of those

types varies. There is often a substantial difference in the performance of the

best 2 core-types(3-1) and 2 core-types(2-2) processors for a given area and power

budget, and which is better varies.

94

Another way to interpret these results is that heterogeneous designs

dampen the effects of constrained power budgets significantly. For example, in

the 40mm2 results, both homogeneous and heterogeneous solutions provide good

performance with a 50W budget. However, the homogeneous design loses 9%

performance with a 40W budget and 23% with a 30W budget. Conversely, with

a heterogeneous design, we can drop to 40W with only a 2% penalty and to 30W

with a 9% loss.

Perhaps more illuminating than the raw performance of the best designs

is what architectures actually provide the best design for a given area and power

budget. We observe that there can be a significant difference between the cores

of the best heterogeneous multiprocessor and the cores constituting the best

homogeneous CMP. That is, the best heterogeneous multiprocessors cannot be

constructed only by making slight modifications to the best homogeneous CMP

design. Rather, they need to be designed from the ground up. Consider, for

example, the best multiprocessors for an area budget of 40mm2 and a power

budget of 30W. The best homogeneous CMP consists of single-issue OOO cores

with 16KB L1 caches, few functional units (1-1-2) and a large number of registers

(128). On the other hand, the best heterogeneous CMP with two types of cores,

for all different workloads, consists of two single-issue in-order cores with 8KB

L1 caches and two single-issue OOO cores with 64KB ICache, 32KB DCache

and double the number of functional units. Clearly, these cores are significantly

different from each other.

Another interesting observation is the reliance on non-monotonicity.

Prior work on heterogeneous multi-core architectures [87, 51, 95, 55] assumed

configurations where every core was either a subset or superset of every other

core (in terms of processor parameters). However, in several of our best hetero-

geneous configurations, we see that no core is a subset of any other core. For

95

example, in the same example as above, the best heterogeneous CMP for two

core types for all same workloads, consists of superscalar in-order cores (issue-

width=2) and scalar out-of-order cores (issue-width=1). Even when all the cores

are different, the “best” multiprocessor for all different workloads consists of

one single-issue in-order core with 16KB L1 caches, one single-issue OOO core

with 32KB ICache and 16KB DCache, one single-issue in-order core with 32KB

L1 caches and one single-issue OOO core with 64KB ICache and 16KB DCache.

Thus, the real power of heterogeneity is not in combining “big” and “little” cores,

but rather in providing cores each well tuned for a class of applications. This was

a common result, and we will explore the importance of non-monotonic designs

further shortly.

An interesting tangential observation is that some interesting core types

keep cropping up in our results. For example, scalar out-of-order cores occurred

frequently in the configurations quoted above. Increased issue-width results in a

significant jump in area and power consumption of a core and hence there is a

resistance to going superscalar under very constrained area and power budgets.

Additional performance is gained by out-of-order issue and larger queues rather

than superscalar issue. While our search methodology finds this to be a fairly

robust engine, no general-purpose microprocessor ever used this design point.

V.F.2 Fixed Power Budget

While the previous section presented results for fixed area budgets, this

section discusses results for fixed power budgets. Figure V.4 (power budget of

30W, both homogeneous and heterogeneous workloads) and Figure V.5 (other

power budgets, heterogeneous workloads) give these results. Note that these

figures are drawn using the same set of data used for results in the previous

section.

96

4.5

5

5.5

6

6.5

7

7.5

8

1 core-type 2 core-
types (3-1)

2 core-
types (2-2)

3 core-
types

4 core-
types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<40mm^2 <30mm^2 <20mm^2

4.5

5

5.5

6

6.5

7

7.5

8

1 core-
type

2 core-
types (3-1)

2 core-
types (2-2)

3 core-
types

4 core-
types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<40mm^2 <30mm^2 <20mm^2

Figure V.4: Throughput for all-same (left) and all-different (right) workloads,

power budget=30W

These results show many of the same trends described in the previous

section, and in other cases illustrate a corresponding principle. For example, here

we can see that in most cases, heterogeneity also dampens the effect of a decreased

area budget – an application of this being that it should be easier to move to more

cores when the design is heterogeneous. With a 50W power budget the cost of

dropping the area budget from 50 to 30 mm2 is much greater for the homogeneous

designs. Notice that there are a couple points where there appears to be no loss for

the homogeneous architecture when reducing the power budget. This is because

both power budgets actually chose the exact same homogeneous design. This is

a result of the loss of granularity available in choosing homogeneous designs.

Thus, as was the case with power budget, area budget also determines

the amount of diversity on the chip.

97

V.F.3 Impact of Non-monotonic Design

As discussed above, we observed non-monotonicity in several of the high-

est performing multiprocessors for various area and power budgets. In this sec-

tion, we analyze this phenomenon further and also try to quantify the advantages

due to non-monotonic design.

The reason this feature is particularly interesting is that any design

that starts with pre-existing cores from a given architectural family is likely to

be monotonic [90, 87]. Additionally, a heterogeneous design that is achieved with

multiple copies of a single core, but each with separate frequencies, is also by

definition monotonic. Thus, the monotonic results we show in this section serve

as a generous upper bound (given the much greater number of configurations we

consider) to what can be achieved with an architecture constructed from existing

same-ISA cores that are monotonic.

Figure V.6 shows the results for a single set of area and power bud-

gets. In this case, we see that for the all-same workload, the benefits from

non-monotonic configurations is small, but with the heterogeneous workload, the

non-monotonic designs outperform the monotonic much more significantly. More

generally (results not shown here), we find that the cost of monotonicity in terms

of performance is greater when budgets are constrained. In fact, diversity beyond

two core types has benefits only for non-monotonic designs for very constrained

power and area budgets.

V.F.4 Varying Thread-Level Parallelism

All results shown thus far in this thesis for heterogeneous architectures

have been conservative, for two reasons. They ignore two axes of diversity that

also drive the need for heterogeneity – varying thread-level parallelism (TLP) and

intra-program (phase) diversity. These two effects are explored in this section and

98

the next.

While all our studies are done for 4-core processors, it is unrealistic to

assume that the processor will always have four threads to run. Thus, we want

the same processor to run efficiently with TLP less than four. We see this effect

in Figure V.7. Here, TLP=1 means one thread is running at all times, TLP=4

means four threads are always running, and TLP=2 and 3 represent a mix of

environments with 1, 2, 3, and 4 threads such that the average TLP is 2.0 or 3.0.

Those two results represent the most realistic expected workloads.

Here we see that the benefits of heterogeneity are definitely more pro-

nounced with mixed TLP, particularly with the all-same workload. In these

particular experiments, we see nearly a 50% advantage from heterogeneity. Of

particular interest is the marked gain incurred by a single thread (TLP=1) when

going from 2 to 3 unique core types. It would not be unexpected for the best

one-thread configuration to be one large core and three tiny cores, with the tiny

cores never being used – this is similar to a large monolithic uniprocessor run-

ning a single thread. However, we beat such a processor with a more balanced

heterogeneous design, with different cores being used by different threads when

they run alone.

V.F.5 Dynamic Switching

The other source of diversity that has been ignored thus far in this

study is intra-thread diversity. This is a significant factor in prior studies (see

Sections III.B, IV, [51]), and is exploited by allowing threads to move between

cores as they run. Even finding the best static mapping of threads to cores is

difficult without the ability to move threads to find the best long-term mapping.

If threads can switch cores, we can exploit intra-thread diversity by

moving to a more suitable core when the thread changes execution character-

99

istics, due to a change in phase. We did not fully explore this characteristic

because the number of simulations would have been enormous – our current

methodology treats performance on the cores as separable, and is thus driven by

single-thread simulations. Finding the best architectures for dynamic switching

would require a full multithreaded simulation for every processor configuration

and every workload mix – that is completely impractical, even given significantly

larger computational resources than we had available.

Despite the fact that our methodology does not necessarily find the best

set of cores given dynamic switching, it is still a reasonable design methodology.

This is because we know that (1) the designs we arrive at are good designs even

when dynamic switching is applied, and (2) the gains over homogeneous designs

will only increase. Point (1) is true because in the worst case, the dynamic

switching performance mirrors the static case, which we have seen typically beats

homogeneous designs. Point (2) is true because the homogeneous processor never

gains from dynamic switching.

The results for the case where the applications are mapped to cores

dynamically using the bounded event-triggered heuristic (see Section III.D for

details) are shown in Figure V.8. The results are for a simulation time of 1 billion

cycles, a sampling phase of 10 million cycles (with five samples of 2 million cycles)

and a steady-phase of 125 million cycles. As can be seen, dynamic switching

results in higher performance, and larger marginal gains from higher levels of

diversity.

V.F.6 Efficient Search Techniques

For this study, we use exhaustive search to find the best multiprocessors

for given area and power budgets. This is because one of our goals was to find

and analyze the very best designs. If we instead started with non-optimal search

100

heuristics, we would have no means to evaluate the quality of the results. The

full search considers over 2.2 billion distinct multiprocessor options. Also, each

multiprocessor is evaluated on thousands of 4-thread workloads. Hence, while the

reported best multiprocessors are indeed the best multiprocessors out of the ones

considered, the design space exploration itself was slow. Also, this methodology

is not scalable. In particular, the methodology becomes impractical when the

number of distinct cores used to construct multiprocessors is increased or when

each multiprocessor is evaluated using many more workloads. In such scenarios,

alternate methodologies for design space exploration need to be considered.

In those cases, a more efficient search algorithm is needed to navigate

the design space. That is, instead of exploring every multiprocessor design, one

can evaluate only a subset of the space (e.g., a path through the space, seeking

increasingly good designs). The choice of the subset determines the accuracy of

evaluation.

As an example, we used a simple well known search algorithm, hill

climbing [111], to redo the design space exploration for multiprocessors with an

area budget of 40mm2 and a power budget of 30W. The starting point was the

four simplest cores, and we then made modifications to the multiprocessor, one

at a time, such that the chosen modification resulted in the highest incremental

performance per unit area out of all the incremental modifications possible. The

modifications are made in small steps. Also, a change once made is never undone.

This has the danger of the search getting stuck in local minima, but results in

much faster searches than generalized hill climbing where the changes can be

undone. The search stops when the available area budget or power budget is

exceeded. We observed that the best multiprocessor yielded by hill climbing is

11% better that the best homogeneous CMP found using exhaustive search and is

only 4.5% worse than the best heterogeneous CMP found using exhaustive search.

101

It is the subject of future work to experiment with other search algorithms, with

which we hope to approach the effectiveness of exhaustive search more closely.

Note that these search algorithms can be used even for fast design space

exploration for uniprocessors.

V.G Validating Results

Our results assume that the performance of a multiprocessor is simply

the sum of the single-thread performance of the individual cores. Our confidence

in this methodology stems from (1) each core on the multiprocessor gets a private

1MB 4-way L2 cache and a private memory controller, (2) we are using multi-

programmed, not parallel, workloads, and (3) the SPEC benchmarks (and others

used in the study) do not generate heavy off-chip traffic. In this section, we

validate the accuracy of this assumption with full multithreaded simulation of

particular points, accounting for interactions beyond the L2 cache.

Less obvious is whether these results, and the methodology we follow,

applies to the case where L2 caches are shared and interactions between cores are

greater. We cannot fully validate all results without full multithreaded simulation

of all configurations. Thus, we reduce the full validation to two questions.

First, is the performance of the configurations found to be “best” ac-

curate, particular with respect to the relative performance of homogeneous and

heterogeneous designs? Second, is the performance ordering of configurations

competing for the designation of “best” configuration preserved with more accu-

rate simulation?

To answer the first question, we consider the highest performing mul-

tiprocessors for various number of core types for an area budget of 40mm2 and

a power budget of 30W. We performed full simulation for the four multiproces-

sors for various 4-threaded all different workloads. We performed simulations

102

assuming that each core has a private 1MB 4-way L2 cache. We also performed

simulations assuming that all cores shared a 4MB, 4-banked 4-way L2 cache.

Figure V.9 shows the results.

As can be seen from the graph, the relative ordering of the four multi-

processors remains the same. In fact, the simulations assuming private L2 caches

lies on top of the line drawn using the methodology assumed in the paper. Even

when the L2 cache is shared, the average performance differs by no more than

2%.

For checking the second condition, we chose 5 multiprocessors with two

core-types (3-1) whose performance, as determined by the assumed methodology,

fell within the top 50 percentile. The multiprocessors are chosen such that they

are equally spread through that range (one from the 90-100th percentile, one from

the 80-90th, etc.). Then we performed full simulation for those multiprocessors

and compared them against the performance of the multiprocessors using the

assumed methodology. Choosing multiprocessors with only two core types helped

in keeping the simulation time manageable. We found that the relative ordering

of these multiprocessors in terms of performance remains the same in all three

cases (performance using assumed methodology, full simulation assuming private

L2 caches and full simulation assuming a shared L2 cache). We considered other

datapoints as well and observed no significant difference in the trends or analysis.

V.H Acknowledgment

The text of Chapter V is in part a reprint of the material as it ap-

pears in the proceedings of the Fifteenth International Conference on Parallel

Architectures and Compilation Techniques (September 2006). The dissertation

author was the primary researcher and author and the co-authors involved in the

submission directed the research which forms the basis for Chapter V.

103

4.5

5

5.5

6

6.5

7

7.5

8

1 core-
type

2 core-
types (3-1)

2 core-
types (2-2)

3 core-
types

4 core-
types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<30mm^2 <20mm^2

4

4.5

5

5.5

6

6.5

7

7.5

8

1 core-
type

2 core-
types (3-1)

2 core-
types (2-2)

3 core-
types

4 core-
types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<50mm^2 <40mm^2 <30mm^2 <20mm^2

4.5

5

5.5

6

6.5

7

7.5

8

1 core-
type

2 core-
types (3-1)

2 core-
types (2-2)

3 core-
types

4 core-
types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<60mm^2 <50mm^2 <40mm^2 <30mm^2

4.5

5

5.5

6

6.5

7

7.5

8

1 core-
type

2 core-
types (3-1)

2 core-
types (2-2)

3 core-
types

4 core-
types

W
ei

g
h

te
d

 S
p

ee
d

u
p

<60mm^2 <50mm^2

Figure V.5: Throughput for all-different workloads for a power budget of (left to

right) 20W, 40W, 50W, and 60W.

104

Figure V.6: Benefits due to non-monotonicity of cores;area budget=40mm2,power

budget =30W

105

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

g
h

te
d

 S
p

ee
d

u
p

/t
h

re
ad

TLP=1 TLP=2 TLP=3 TLP=4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 core-type 2 core-types 3 core-types 4 core-types

W
ei

g
h

te
d

 S
p

ee
d

u
p

/t
h

re
ad TLP=1 TLP=2 TLP=3 TLP=4

Figure V.7: Throughput for all-same and all-different workloads for different

TLPs, area budget=40mm2, power budget=30W

106

4

4.5

5

5.5

6

6.5

1 core-type 2 core-types
(3-1)

2 core-types
(2-2)

3 core-types 4 core-types

W
ei

gh
te

d
S

pe
ed

up

Static Dynamic

Figure V.8: Benefits due to dynamic switching; area budget = 40mm2,power

budget=30W

Figure V.9: Comparing the results using assumed methodology against full sim-

ulation results: area budget = 40mm2, power budget = 30W

VI

Obviating Overprovisioning:

Conjoined-core Multiprocessing

Architectures

Most modern processors are highly overprovisioned. Designers usually

provision the CPU for a few important applications that stress a particular re-

source. For example, the vector processing unit (VMX) of a processor can often

take up more than 10% of the die area, gets used by only a few applications, but

the functionality still needs to be there.

“Multi-core-oblivious” multi-core designs exacerbate the overprovision-

ing problem because the blind replication of cores results in multiplying the cost

of overprovisiong by the number of cores. What is really needed is the same

level of overprovisioning for any single thread without multiplying the cost by

the number of cores.

In this study, we propose a holistic approach to designing chip multi-

processors where the adjacent cores of a multi-core share large, over-provisioned

resources. There are several benefits to sharing hardware between more than

107

108

one processor or thread. Time-sharing a lightly-utilized resource saves area, in-

creases efficiency, and reduces leakage. Dynamically sharing a large resource can

also yield better performance than having distributed small private resources,

statically partitioned [129, 41].

Topology is a significant factor in determining what resources are feasi-

ble to share and what are the area, complexity, and performance costs of sharing.

For example, in the case of sharing entire floating-point units (FPUs), since pro-

cessor floorplans often have the FPU on one side and the integer datapath on

the other side, by mirroring adjacent processors FPU sharing could present min-

imal disruption to the floorplan. For the design of a resource-sharing core, the

floorplan must be co-designed with the architecture, otherwise the architecture

may specify sharings that are not physically possible or have high communication

costs. In general, resources to be shared should be large enough that the addi-

tional wiring needed to share them does not outweigh the area benefits obtained

by sharing.

With these factors in mind we have investigated the possible sharing of

FPUs, crossbar ports, first-level instruction caches, and first-level data caches be-

tween adjacent pairs of processors. Resources could potentially be shared among

more than two processors, but this creates more topological problems. Because

we primarily investigate sharing between pairs of processors, we call our approach

conjoined-core chip multiprocessors.

There are many ways that the shared resources can be allocated to the

processors in a conjoined configuration. We consider both simple mechanisms,

such as fixed allocation based on odd and even cycles, as well as more intelligent

sharing arrangements we have developed as part of this work. All of these sharing

mechanisms must respect the constraints imposed by long-distance on-chip com-

munication. In fact, we assume in all of our sharing mechanisms that core-to-core

109

delays are too long to enable cycle-by-cycle arbitration of any shared resource.

It is also possible that the best organization of a shared resource is

different than the best organization of a private resource. For example, the right

banking strategy may be different for shared memory structures than for private

memory structures. Therefore, we also examine tradeoffs in the design of the

shared resources as part of this study.

The chief advantage of our proposal is a significant reduction in per-

core real estate with minimal impact on per-core performance, providing a higher

computational capability per unit area. This can either be used to decrease the

area of the whole die, increasing the yield, or to support more cores given a fixed

die size. Ancillary benefits include a reduction in leakage power due to a fewer

number of transistors for a given computational capability.

VI.A Related Work

Prior work has evaluated design space issues for allocating resources to

thread execution engines, both at a higher level and at a lower level than is the

target of this chapter. At a higher level, CMP, SMT, and CMPs composed of SMT

cores have been compared. At a lower level, previous work has investigated both

multithreaded and single-threaded clustered architectures that break out portions

of a single core and make them more or less accessible to certain instructions or

threads within the core.

Krishnan and Torrellas study the tradeoffs of building multithreaded

processors as either a group of single-threaded CMP cores, a monolithic SMT

core, or a hybrid design of multiple SMT cores in [83]. Burns and Gaudiot [31]

study this as well. Both the studies conclude that the hybrid design, a chip mul-

tiprocessor where the individual cores are SMT, represents a good performance-

complexity design point. They do not share resources between cores, however.

110

There has been some work on exploring clustering and hardware par-

titioning for multithreaded processors. Collins and Tullsen [34] evaluate various

clustered multithreaded architectures to enhance both IPC as well as cycle time.

They show that the synergistic combination of clustering and simultaneous mul-

tithreading minimizes the performance impact of the clustered architecture, and

even permits more aggressive clustering of the processor than is possible with a

single-threaded processor.

Dolbeau and Seznec [41] propose the CASH architecture as an inter-

mediate design point between CMP and SMT architectures for improving per-

formance. This work is probably the closest prior work to ours. CASH shares

caches, branch predictors, and divide units between dynamically-scheduled cores.

CASH pools resources from two to four cores to create larger dynamically shared

structures with the goal of higher per-core performance. However, the CASH

work did not evaluate the area and latency implications of wire routing required

by sharing. In our work we consider sharing entire FPUs and crossbar ports

as well as caches, and attempt to accurately account for the latency and area

of wiring required by sharing. We also consider more sophisticated scheduling

techniques for sharing which are consistent with the limitations of global chip

communication.

VI.B Baseline Architecture

Conjoined-core chip multiprocessing deviates from a conventional chip

multiprocessor design by sharing selected hardware structures between adjacent

cores to improve processor efficiency. The choice of the structures to be shared

depends not only on the area occupied by the structures but also whether it

is topologically feasible without significant disruption to the floorplan or wiring

overheads. In this section, we discuss the baseline chip multiprocessor architec-

111

ture and derive a reasonable floorplan for the processor, estimating area for the

various on-chip structures.

VI.B.1 Baseline processor model

For our evaluations, we assume a processor similar to Piranha [26], with

eight cores sharing a 4MB, 8-banked, 4-way set-associative, 128B L2 cache. The

cores are modeled after Alpha 21164 (EV5). EV5 is a 4-issue in-order processor.

The various parameters of the processor are given in Table VI.1. The processor

was assumed to be implemented in 0.07 micron technology and clocked at 3.0

GHz.

Table VI.1: Simulated Baseline Processor for studying Conjoining

2K-gshare branch predictor

Issues 4 integer instrs per cycle, including up to 2 Load/Store

Issues 2 FP instructions per cycle

4 MSHRs

64 Byte linesize for L1 caches, 128 Byte linesize for L2 cache

64k 2-way 3 cycle L1 Instruction cache (1 access/cycle)

64k 2-way 3 cycle L1 Data cache (2 access/cycle)

4MB 4-way set-associative, 8-bank 10 cycle L2 cache (3 cycle/access)

4 cycle L1-L2 data transfer time plus 3 cycle transfer latency

450 cycle memory access time

64 entry DTLB, fully associative, 256 entry L2 DTLB

48 entry ITLB, fully associative

8KB pages

For the baseline processor, each core has 64KB, 2-way associative L1

instruction and data caches. The ICache is single-ported while the DCache is

dual-ported (2 R/W ports). The L1 cache sizes are similar to those of Piranha

cores. A maximum of 4 instructions can be fetched in a given cycle from the

ICache. Linesize for both the L1 caches is 64 bytes. Each core has a private

112

FPU. Floating point divide and square root are non-pipelined. All other floating

point operations are fully pipelined. The latency for all operations is modeled

after EV5 latencies.

Cores are connected to the L2 cache using a point-to-point fully-connected

blocking matrix crossbar such that each core can issue a request to any of the L2

cache banks every cycle. However, one bank can entertain a request from only

one of the cores any given cycle. Crossbar link latency is assumed to be 3 cycles,

and the data transfer time is 4 cycles.

Each bank of the L2 cache has a memory controller and an associated

RDRAM channel. The memory bus is assumed to be clocked at 750MHz, with

data being transferred on both edges of the clock for an effective frequency of

1.5GHz and an effective bandwidth of 3GB/s per bank (considering that each

RDRAM memory channel supports 30 pins and 2 data bytes). Note that for any

reasonable assumption about power and ground pins, the total number of pins

that this memory organization would require would be well within the ITRS [15]

limits for the cost/performance market. Memory latency is set to 150ns.

VI.B.2 Die floorplan and area model

The baseline architecture and its floorplan is shown in Figure VI.1. We

use CACTI to estimate the size and dimensions of the L2 cache. Each 512KB

bank is 8.08mm2. CACTI gives the aspect ratio to be 2.73. So, each bank

is 1.7mm × 4.7mm. Total L2 cache area is 64.64mm2. The area of the EV5-

like core (excluding L1 caches) was calculated using similar assumptions and

methodology as was used in [87], which also featured multiple Alpha cores on a

die and technology scaling. Each core excluding caches is 2.12mm2. CACTI gives

the area of of the L1 64KB, 2-way ICache to be 1.15mm2 and the 64KB, 2-way

DCache to be 2.59mm2. Hence, including the area occupied by private L1 caches,

113

P3P2P1P0

P4 P5 P6 P7

M4 M5 M6 M7

M0 M1 M2 M3

Figure VI.1: Baseline die floorplan for studying conjoining, with L2 cache banks

in the middle of the cluster, and processor cores (including L1 caches) distributed

around the outside

core area is 5.86mm2. If we assume an aspect-ratio of 1, it is 2.41mm× 2.41mm.

The total area for the eight cores is 46.9mm2.

The crossbar area calculations measure the area occupied by the inter-

connect wires. Each link from a core to a cache bank consists of roughly 300

lines. Of those, 256 lines correspond to a set of 128 unidirectional wires from

the L2 to the cores and another 128-bit data bus from the cores to the L2 cache.

We assume 20 lines correspond to the 20-bit unidirectional addressing signals

while the rest correspond to control signals. Since each of the cores needs to be

able to talk to each of the banks, there is a switched repeater corresponding to

each core-to-bank interface. Therefore, the number of horizontal tracks required

per link would be approximately 300. The total number of input ports is equal

to the number of cores. So, the number of horizontal tracks required will be

8 × 300 = 2400. This would determine the height of the crossbar. For the lay-

114

out of the baseline processor (shown in Figure VI.1), the crossbar lies between

the cores and the L2 banks. Also, there are two clusters of interconnects. The

clusters are assumed to be connected by vertical wires in the crossbar routing

channels and by vertical wires in upper metal layers that run over the top of the

L2 cache banks (see Figure VI.1).

We assume that all the (horizontal) connecting lines are implemented

in the M3/M5 layer. ITRS [15] and the “Future of Wires” paper by Horowitz,

et al. [64] predict that wire pitch for a semi-global layer is 8-10λ. Assuming

10λ for 0.07 micron, the pitch is 350nm. The width of the crossbar then is

2400 × 350nm = 0.84mm. Therefore, the area occupied by the crossbar for the

baseline processor is 16.22mm2. This methodology of crossbar area estimation is

similar to that used in [76].

Therefore, the total area of the processor is 127.76mm2 out of which

46.9mm2 is occupied by the cores, 16.22mm2 by the crossbar and 64.64mm2 by

the L2 cache.

VI.C Conjoined-core Architectures

For the conjoined-core chip multiprocessor, we consider four optimiza-

tions – instruction cache sharing, data cache sharing, FPU sharing, and crossbar

sharing. For each kind of sharing, two adjacent cores share the hardware struc-

ture. In this section, we investigate the mechanism for each kind of sharing

and discuss the area benefits that they accrue. We talk about the performance

impact of sharing in Section VI.E. The usage of the shared resource can be

based on a policy decided either statically, such that it can be accessed only

during fixed cycles by a certain core, or the accesses can be determined based

on certain dynamic conditions visible to both cores (given adequate propagation

time). The initial mechanisms discussed in this section all assume the simplest

115

and most naive static scheduling, where one of the cores gets access to the shared

resource during odd cycles while the other core gets access during even cycles.

More intelligent sharing techniques/policies are discussed in Section VI.F. All

of our sharing policies, however, maintain the assumption that communication

distances between cores are too great to allow any kind of dynamic cycle-level

arbitration for shared resources.

Note that in modern high-performance pipelines (beginning with the

DEC Alpha 21064), variable operation latency past the issue point as a result of

FIFO-type structures is not possible. This is because in modern pipelines, each

pipestage is only a small number of FO4 delays, and global communication plus

control logic overhead for implementing stalling on a cycle-by-cycle basis would

drastically increase the cycle time. Such stalling is required by variable delays

because instructions must be issued assuming results of previous operations are

available when expected. Instead any delay (such as that required by a DCache

miss instead of an expected hit) results in a flush and replay of the missing

reference plus the following instructions. Although flush and replay overhead is

acceptable for rare long latency events such as cache misses, it is unacceptable for

routine operation of the pipeline. By assuming very simple fixed scheduling in

the baseline sharing case we guarantee that the later pipe stages do not need to

be stalled, and the cycle time of the pipeline is not adversely affected. Later we

examine more complex techniques for scheduling sharing that remain compatible

with high-speed pipeline design.

Due to wiring overheads, it only makes sense to share relatively large

structures that already have routing overhead. FPUs, crossbars, and caches all

have this property. In contrast, ALUs in a datapath normally fit under the

datapath operand and result busses. Thus, placing something small like an indi-

vidual ALU remotely would actually result in a very significant increase in bus

116

wiring and chip area instead of a savings, as well as increased latency and power

dissipation.

VI.C.1 ICache sharing

We implement ICache sharing between two cores by providing a shared

fetch path from the ICache to both the pipelines. Figure VI.2 shows a floorplan

of two adjacent cores sharing a 64KB, 2-way associative ICache. Because the

layout of memories is a function of the number of rows and columns, we have

increased the number of columns but reduced the number of rows in the shared

memory. This gives a wider aspect ratio that can span two cores.

As mentioned, the ICache is time-shared every other cycle. We inves-

tigate two ICache fetch widths. In the double fetch width case, the fetch width

is changed to 8 instructions every other cycle (compared to 4 instructions every

cycle in the unshared case). The time-averaged effective fetch bandwidth of all

cores (ignoring branch effects) remains unchanged in this case. In the original

fetch width case, we leave the fetch width to be the same. In this case the ef-

fective per-core fetch bandwidth is halved. Finally, we also investigate a banked

architecture, where cores can fetch 4 instructions every cycle, but only if their

desired bank is allocated to them that cycle (a single core gets access to the low

bank on even cycle and high bank on odd cycles).

In the double fetch width case, sharing requires a wider instruction fetch

path, wider multiplexors and extra instruction buffers before decode for the in-

struction front end. We have modeled this area increase and we also assume that

sharing increases the access latency by 1 cycle. The double fetch width solution

would also result in higher power consumption per fetch. Furthermore, since

longer fetch blocks are more likely to include taken branches out of the block, the

fetch efficiency is somewhat reduced. We also evaluate two cases corresponding to

117

a shared instruction cache with an unchanged fetch width – one with the access

time extended by a cycle and another when it remains unchanged.

Based on modeling with CACTI, in the baseline case each ICache takes

up 1.15mm2. In the double fetch width case, the ICache has double the band-

width (BITOUT=256), and requires 1.16mm2. However, instead of 8 ICaches on

the die, there are just four of them. This results in a core area savings of 9.8%. In

the normal fetch width case (BITOUT=128), sharing results in core area savings

of 9.9%.

VI.C.2 DCache sharing

Even though the DCaches occupy a significant area, DCache sharing is

not an obvious candidate for sharing because of its relatively high utilization.

In our DCache sharing experiments, two adjacent cores share a 64KB, 2-way

set-associative L1 DCache. Each core can issue memory instructions only every

other cycle.

Sharing entails lengthened wires that increase access latency slightly.

This latency may or may not be able to be hidden in the pipeline. Thus, we

evaluate two cases – one where the access time is lengthened by one cycle and

another where the access time remains unchanged.

Based on modeling with CACTI, each dual-ported DCache takes up

2.59mm2 in the baseline processor. In the shared case, it takes up the area of

just one cache for every two cores, but with some additional wiring. This results

in core area savings of 22.09%.

VI.C.3 Crossbar sharing

As shown in VI.B, the crossbar occupies a significant fraction (13%) of

the die area. The configuration and complexity of the crossbar is strongly tied to

118

the number of cores. Therefore, we also study how crossbar sharing can be used

to free up die area.

Crossbar sharing involves two adjacent cores sharing an input port to the

L2 cache’s crossbar interconnect. This halves the number of rows (or columns) in

the crossbar matrix resulting in linear area savings. Crossbar sharing entails that

only one of the two conjoined cores can issue a request to a particular L2 cache

bank in a given cycle. Again, we assume a baseline implementation where one of

the conjoined cores can issue requests to a bank every odd cycle, while the other

conjoined core can issue requests only on even cycles. There would also be some

overhead in routing signal and data to the shared input port. Hence, we assume

the point-to-point communication latency will be lengthened by one cycle for the

conjoined core case. Figure VI.10 shows conjoined core pairs sharing input ports

to the crossbar.

Crossbar sharing results in halving the area occupied by the interconnect

and results in 6.43% die area savings. This is equivalent to 1.38 times the size of

a single core.

Note that this is not the only way to reduce the area occupied by the

crossbar interconnect. One can alternatively halve the number of wires for a given

point-to-point link to (approximately) halve the area occupied by that link. This

would, though, double the transfer latency for each connection. In Section VI.E,

we compare both these approaches and show that this performs worse than our

port-sharing solution.

Finally, if the DCache and ICache are already shared between two cores,

sharing the crossbar port between the same two cores is very straightforward since

the cores have already been joined together before reaching the crossbar.

119

VI.C.4 FPU sharing

Processor floorplans often have the FPU on one side and the integer

datapath on the other side. So, FPU sharing can be enabled by simply mirroring

adjacent processors without significant disruption to the floorplan. Wires con-

necting the FPU to the left core and the right core can be interdigitated, so no

additional horizontal wiring tracks are required (see Figure VI.2). This also does

not significantly increase the length of wires in comparison the non-conjoined

case. In our baseline FPU sharing model, each conjoined core can issue floating-

point instructions to the fully-pipelined floating-point sub-units only every other

cycle. Based on our design experience, we believe that there would be no oper-

ation latency increase when sharing pipelined FPU sub-units between the cores.

This is because for arithmetic operations the FP registers remain local to the

FPU. For transfers and load/store operations, the routing distances from the

integer datapath and caches to the FPU remain largely unchanged (see Figure

VI.2). For the non-pipelined sub-units (e.g., divides and square root) we assume

alternating three cycle scheduling windows for each core. If a non-pipelined unit

is available at the start of its three-cycle window, the core may start using it, and

has the remainder of the scheduling window to communicate this to the other

core. Thus, when the non-pipelined units are idle, each core can only start a

non-pipelined operation once every six cycles. However, since operations have a

known long latency, there is no additional scheduling overhead needed at the end

of non-pipelined operations. Thus, when a non-pipelined unit is in use, another

core waiting for it can begin using the non-pipelined unit on the first cycle it

becomes available.

The FPU area for EV5 is derived from published die photos, scaling the

numbers to 0.07micron technology and then subtracting the area occupied by the

FP register file. The EV5 FPU takes up 1.05mm2 including the FP register file.

120

We estimate the area taken up by a 5 exclusive read port (ERP), 4 exclusive

write port (EWP), 32-entry FP register file using register-bit equivalents (rbe).

The total area of the FPU (excluding the register file) is 0.72mm2. Sharing results

in halving the number of units and results in area savings of 6.1%.

We also consider a case where each core has its own copy of the divide

sub-unit, while the other FPU sub-units are shared. We estimated the area of

the divide sub-unit to be 0.0524mm2. Total area savings in that case is 5.7%.

VI.C.5 Summary of sharing

To sum up, ICache sharing results in core area savings of 9.9%, DCache

sharing results in core area savings of 22%, FPU sharing saves 6.1% of the core

area, and sharing the input ports to the crossbar can result in a savings of 1.4

cores. Statically deciding to let each conjoined core access a shared hardware

structure only every other cycle provides an upper-bound on the possible degra-

dation. As our results in VI.E indicate, even these conservative assumptions lead

to relatively small performance degradation and hence reinforce the argument for

conjoined-core chip multiprocessing.

VI.D Experimental Methodology

Benchmarks are simulated using SMTSIM [127]. The simulator was

modified to simulate the various chip multiprocessor (conjoined as well as con-

ventional) architectures.

Several of our evaluations are done for various numbers of threads rang-

ing from one through a maximum number of available processor contexts. Each

result corresponds to one of three sets of eight benchmarks, where each data point

is the average of several permutations of those benchmarks.

Table VI.D shows the subset of the SPEC CPU2000 benchmark suite

121

Table VI.2: Benchmarks simulated for evaluating conjoining

Program Description FF Dist

(in millions)

bzip2 Compression 5200

crafty Game Playing:Chess 100

eon Computer Visualization 1900

gzip Compression 400

mcf Combinatorial Optimization 3170

perl PERL Programming Language 200

twolf Place and Route Simulator 3200

vpr FPGA Circuit Placement and Routing 7200

applu Parabolic/Elliptic Partial Diff. Eqn. 1900

apsi Meteorology:Pollutant Distribution 4700

art Image Recognition/Neural Networks 6800

equake Seismic Wave Propagation Simulation 19500

facerec Image Processing: Face Recognition 13700

fma3d Finite-element Crash Simulation 29900

mesa 3-D Graphics Library 9000

wupwise Physics/Quantum Chromodynamics 58500

that was used. The benchmarks are chosen such that out of the 8 CINT2000

benchmarks, half of them (vpr,crafty,eon,twolf) have a dataset of less than 100MB

while the remaining half have datasets bigger than 100MB. Similarly, for CFP2000

benchmarks, half of them (wupwise,applu,apsi,fma3d) have datasets bigger than

100MB while the remaining half have datasets of less than 100MB. We also per-

form all our evaluations for mixed workloads which are generated using 4 integer

benchmarks (bzip2,mcf,crafty,eon) and 4 floating-point benchmarks (wupwise,

applu, art, mesa). Again, the subsetting was done based on application datasets.

All the data points are generated by evaluating 8 workloads for each

case and then averaging the results. A workload consisting of n threads is con-

structed by selecting the benchmarks using a sliding window (with wraparound)

of size n and then shifting the window right by one. Since there are 8 distinct

122

benchmarks, the window selects eight distinct workloads (except for cases when

the window-size is a multiple of 8, in those cases all the selected workloads have

identical composition). All of these workloads are run, ensuring that each bench-

mark is equally represented at every data point. This methodology for workload

construction is similar to that used in [120].

We also perform evaluations using the parallel benchmark water from

the SPLASH benchmark suite and use the STREAM benchmark for crossbar

evaluations. We change the problem size of STREAM to 16,384 elements. At

this size, when running eight copies of STREAM, the working set fits into the

L2-cache and hence it acts as a worst-case test of L1-L2 bandwidth (and hence

crossbar interconnect). We also removed the timing statistics collection routines.

The Simpoint tool [118] was used to find good representative fast-

forward distances for each SPEC benchmark. Early simpoints are used. Ta-

ble VI.D also shows the distance to which each benchmark was fast-forwarded

before beginning simulation. For water, fast-forwarding is done just enough so

that the parallel threads get forked. We do not fast forward for STREAM.

All simulations involving n threads are preceded by a warmup of 10×n

million cycles. Simulation length was 800 million cycles. All the SPEC bench-

marks are simulated using ref inputs. All the performance results are in terms

of throughput.

VI.E Simple Sharing

This section examines the performance impact of conjoining cores as-

suming simple time-slicing of the shared resources on alternate cycles. More

intelligent sharing techniques are discussed in the next section.

In this section, we show results for various threading levels. We schedule

the workloads statically and randomly such that two threads are run together on a

123

conjoined-core pair only if one of them cannot be placed elsewhere. Hence, for the

given architecture, for 1 to 4 threads, there is no other thread that is competing

for the shared resource. If we have 5 runnable threads, one of the threads needs

to be put on a conjoined-core pair that is already running a thread. And so on.

However, even if there is no other thread running on the other core belonging to

a conjoined-core pair, we still assume, in this section, that accesses can be made

to the shared resource by a core only every other cycle.

VI.E.1 Sharing the ICache

Results are shown as performance degradation relative to the the base-

line conventional CMP architecture. Performance degradation experienced with

ICache sharing comes from three sources: increased access latency, reduced effec-

tive fetch bandwidth, and inter-thread conflicts. Effective fetch bandwidth can

be reduced even if the fetch width is doubled because of the decreased likelihood

of filling an eight-wide fetch with useful instructions, relative to a four-wide fetch.

Figure VI.4 shows the performance impact of ICache sharing for varied

threading levels for SPEC-based workloads. The results are shown for a fetch

width of 8 instructions and assuming that there is an extra cycle latency for

ICache access due to sharing. We assume the extra cycle is required since in the

worst case the round-trip distance to read an ICache bit has gone up by two times

the original core width due to sharing. We observe a performance degradation of

5% for integer workloads, 1.2% for FP workloads and 2.2% for mixed workloads.

The performance degradation does not change significantly when the number of

threads is increased from 1 to 8. This indicates that inter-thread conflicts are not

a problem for this workload and these caches. The SPEC benchmarks are known

to have relatively small instruction working sets.

To identify the main cause for performance degradation on ICache shar-

124

ing, we also show results assuming that there is no extra cycle increase in the

latency. Figure VI.5 shows the 8-thread results for both integer and floating-point

workloads. Performance degradation becomes less than 0.25%. Two conclusions

can be drawn from this. First, the extra latency is the main reason for degra-

dation on ICache sharing (note that the latency does not introduce a bubble

in the pipeline – the performance degradation comes from the increased branch

mispredict penalty due to the pipeline being extended by a cycle). The integer

benchmarks are most affected by the extra cycle latency, being more sensitive to

the branch mispredict penalty.

Increasing fetch width to 8 instructions ensures that the potential fetch

bandwidth remains the same for the sharing case as the baseline case, but it

increases the size of the ICache (relative to a single ICache in the base case) and

results in increased power consumption. This is because doubling the output

width doubles both the number of sense amps and the data output lines being

driven, and these structures account for much of the power in the original cache.

Thus, we also investigate the case where fetch width is kept the same. In that case,

only up to 4 instructions can be fetched every other cycle (effectively halving the

per-core fetch bandwidth). Figure VI.5 shows the results for 8-thread workloads.

As can be seen, degradation jumps up to 16% for integer workloads and 10.2%

for floating-point workloads. This is because at effective fetch bandwidth of 2

instructions every cycle (per core), execution starts becoming fetch limited.

We also investigate the impact of partitioning the ICache vertically into

two equal sized banks. A core can alternate accesses between the two banks. It

can fetch 4 instructions every cycle but only if the desired bank is available. A

core has access to bank 0 one cycle, bank 1 the next, etc., with the other core

having the opposite allocation. This allows both threads to access the cache in

some cycles. It is also possible for both threads to be blocked in some cycles.

125

However, bandwidth is guaranteed to exceed the previous case (ignoring cache

miss effects) of one 4-instruction fetch every other cycle, because every cycle that

both threads fail to get access will be immediately followed by a cycle in which

they both can access the cache.

Figure VI.5 shows the results. Degradation goes down by 55% for in-

teger workloads and 53% for FP workloads due to overall improvement in fetch

bandwidth.

VI.E.2 DCache sharing

Similar to the ICache, performance degradation due to DCache sharing

comes from: increased access latency, reduced cache bandwidth, and inter-thread

conflicts. Unlike the ICache, the DCache latency has a direct effect on perfor-

mance, as the latency of the load is effectively increased if it cannot issue on the

first cycle it is ready.

Figure VI.6 shows the impact on performance due to DCache sharing for

SPEC workloads. The results are shown for various threading levels. We observe

a performance degradation of 4-10% for integer workloads, 1-9% for floating point

workloads and 2-13% for mixed workloads. Degradation is higher for integer

workloads than floating point workloads for small numbers of threads. This is

because the typically higher ILP of the FP workloads allows them to hide a

small increase in latency more effectively. Also, inter-thread conflicts are higher,

resulting in increased performance degradation for higher numbers of threads.

We also studied the case where the shared DCache has the same access

latency as the unshared DCache. Figure VI.7 shows the results for the 8-thread

case. Degradation lessens for both integer workloads as well as floating-point

workloads, but less so in the case of FP workloads as conflict misses and cache

bandwidth pressure remain.

126

VI.E.3 FPU sharing

FPUs may be the most obvious candidates for sharing. For SPEC

CINT2000 benchmarks only 0.1% of instructions are floating point while even

for CFP2000 benchmarks, only 32.3% of instructions are floating-point instruc-

tions [20]. Also, FPU bandwidth is a performance bottleneck only for specialized

applications.

We evaluated FPU sharing for integer workloads, FP workloads, and

mixed workloads, but only present the FP and mixed results (Figure VI.8) here.

The degradation is less than 0.5% for all levels of threading, even in these cases.

One reason for these results is that the competition for the non-pipelined

units (divide and square root) is negligible in the SPEC benchmarks. To illustrate

code where non-pipelined units are more heavily used, Figure VI.9 shows the

performance of water (which has a non-trivial number of divides) running eight

threads. It shows performance with a shared FP divide unit vs. unshared FP

divide units. In this case, unless each core has its own copy of the FP divide unit,

performance degradation can be significant.

VI.E.4 Crossbar sharing

We implement the L1-L2 interconnect as a blocking fully-connected ma-

trix crossbar, based on the initial Piranha design. As the volume of traffic between

L1 and L2 increases, the utilization of the crossbar goes up. Since there is a single

path from a core to a bank, high utilization can result in contention and queuing

delays.

As discussed in Section VI.C, the area of the crossbar can be reduced by

decreasing the width of the crossbar links or by sharing the ports of the crossbar,

thereby reducing the number of links. We examine both techniques. Crossbar

sharing involves the conjoined cores sharing an input port of the crossbar. Fig-

127

ure VI.10 shows the results for eight copies of the STREAM benchmark. It must

be noted that this is a component benchmark we have tuned for worst-case utiliza-

tion of the crossbar. The results are shown in terms of performance degradation

caused for achieving certain area savings. For example, for achieving crossbar

area savings of 75% (area/4), we assume that the latency of every crossbar link

has been doubled for the crossbar sharing case while the transfer latency has been

quadrupled for the crossbar width reduction case.

We observe that crossbar sharing outperforms crossbar width reduction

in all cases. Even though sharing results in increased contention at the input

ports, it is the latency of the links that is primarily responsible for queuing of

requests and hence overall performance degradation.

We also conducted crossbar exploration experiments using SPEC bench-

marks. However, most of the benchmarks do not exercise L1-L2 bandwidth much,

resulting in relatively low crossbar utilization rates. The performance degrada-

tion in the worst case was less than 5% for an area reduction factor of 2.

VI.E.5 Simple sharing summary

Note that for all the results in this section, we assume that the shared

resource is accessible only every other cycle even if the other core on a conjoined-

core pair is idle. This was done to expose the factors contributing to overall per-

formance degradation. However, in a realistic case, if there is no program running

on the other core, the shared resources can be made fully accessible to the core

running the program and hence there would be no (or much smaller) degradation.

Thus, for the above sharing cases, the degradation values for threading levels of

four are overstated. In fact, the performance degradation due to conjoining will

be minimal for light as well as medium loads.

This section indicates that, even in the absence of sophisticated sharing

128

techniques, conjoined-core multiprocessing is a reasonable approach. Optimiza-

tions in the next section make it even more attractive. It might be argued that

this is simply evidence of the over-provisioning of our baseline design. There are

two reasons why that is the wrong conclusion. First, our baseline is based on real

designs, and is not at all aggressive compared to modern processor architectures.

Second, real processors are over-provisioned – to some extent that is the point of

this study. Designers provision the CPU for the few important applications that

really stress a particular resource. What this research shows is that we can main-

tain that same level of provisioning for any single thread, without multiplying

the cost of that provisioning by the number of cores.

VI.F Intelligent Sharing of Resources

The previous section assumed a very basic sharing policy and hence gave

an upper bound on the degradation for each kind of sharing. In this section, we

discuss more advanced techniques for minimizing performance degradation.

VI.F.1 ICache sharing

In this section, we will focus on that configuration that minimized area,

but maximized slowdown — the four-wide fetch shared ICache, assuming an

extra cycle of latency. In that case, both access latency and fetch bandwidth

contribute to the overall degradation. We propose two techniques for minimizing

degradation in that case. Most of these results would also apply to the other

configurations of shared ICache, taking them even closer to zero degradation.

Assertive ICache Access

Chapter VI.E discussed sharing such that the shared resource gets ac-

cessed evenly irrespective of the access needs of the individual cores. Instead,

129

the control of a shared resource can be decided assertively based on the resource

needs.

We explore assertive ICache access where, whenever there is an L1 miss,

the other core can take control of the cache after miss detection. We assume that

a miss can be detected and communicated to the other core in 3 cycles. The

control would start getting shared again when the data returns. This does not

incur any additional latency since the arrival cycle of the data is known well in

advance of its return.

Figure VI.11 shows the results for assertive icache access. Like all graphs

in this section, we show results for eight threads, where contention is highest. We

observe a 13.7% improvement in the degradation of integer workloads and an

improvement of 22.5% for floating point workloads. Performance improvement

is because of improved effective fetch bandwidth. These results are for eight

threads, so there is no contribution from threads that are not sharing an ICache.

A minor tweak to assertive access (for ICache as well as DCache and FPU) can

ensure that the shared resource becomes a private resource when the other core

of the conjoined pair is idle.

Fetch combining

Most parallel code is composed of multiple threads, each executing code

from the same or similar regions of the shared executable (possibly synchronizing

occasionally to ensure they stay in the same region). Hence, it is not uncommon

for two or more threads to be fetching from the same address in a particular

cycle.

In a conjoined-core architecture with shared ICache, this property can

be exploited for improving overall fetch bandwidth. We propose fetch combining

– when two threads running on the same conjoined-core pair have the same

130

nextPC cache index, then they both can return data from the cache that cycle.

The overhead for fetch combining is minimal, under the following assumptions.

We assume that the fetch units are designed so that, in the absence of sharing

(no thread assigned to the alternate core), one core can fetch every cycle. Thus,

each core has the ability to generate a nextPC cache index every cycle, and to

consume a fetch line every cycle. In sharing mode, however, only one request is

filled. Thus, in sharing mode with fetch combining, both cores can present a PC

to the ICache, but only the PC associated with the core with access rights that

cycle is serviced. However, if the presented PCs are identical, the alternate core

also reads the data presented on the (already shared) output port and bus. This

is simplified if there is some decoupling of the branch predictor from the fetch

unit. If a queue of nextPC cache indices is buffered close to the ICache, we can

continue to present new PCs to the cache every cycle, even if it takes more than

a cycle for the result of the PC comparison to get back to the core.

We find that the frequency of coincident indices is quite high – this is

because once the addresses match, they tend to stay synched up until the control

flow diverges.

Figure VI.12 shows the performance of fetch combining for water run-

ning eight threads. We observed a 25% reduction of performance degradation.

Note that fetch combining is appropriate for other multithreading schemes like

SMT, etc.

VI.F.2 DCache sharing

Performance loss due to DCache sharing is due to three factors – inter-

thread conflict misses, reduced bandwidth and increased latency (if applicable).

We propose two techniques for minimizing degradation due to DCache sharing.

131

Assertive DCache Access

Assertive access can also be used for the shared DCaches. Whenever

there is an L1 miss on some data requested by a core, if the load is determined

to be on the right path, the core relinquishes control over the shared DCache.

There may be some delay between detection of L1 miss and the determination

that the load is on the right path. Once the core relinquishes control, the other

core takes over full control and can then access the DCache whenever it wants.

The timings are the same as with the ICache assertive access. This policy is still

somewhat naive, assuming that the processor will stall for this load (recall, these

are in-order cores) before another load is ready to issue – more sophisticated

policies are possible.

Figure VI.13 shows the results. Assertive access leads to 29.6% im-

provements in the degradation for integer workloads and 23.7% improvements for

floating point workloads. Improvements are due to improved data bandwidth.

I/O partitioning

The Dcache interface consists of two R/W ports. In the basic DCache

sharing case, the DCache (and hence both the ports) can be accessed only every

other cycle. Instead, one port can be statically assigned to each of the cores and

that will make the DCache accessible every cycle.

Figure VI.13 shows the results comparing the baseline sharing policy

against static port-to-core assignment. We observed a 33.6% reduction in degra-

dation for integer workloads while the difference for FP workloads was only 3%.

This outperforms the cycle-slicing mechanism, particularly for integer bench-

marks, for the following reason: when load port utilization is not high, the like-

lihood (with port partitioning) of a port being available when a load becomes

ready is high. However, with cycle-by-cycle slicing, the likelihood of a port being

132

available that cycle is only 50%.

VI.F.3 Symbiotic assignment of threads

Previous techniques involved either using additional hardware for min-

imizing performance impact or scheduling accesses to the shared resources in-

telligently. Alternatively, high-level scheduling of applications can be done such

that “friendly” threads run on conjoined cores. Symbiotic scheduling has been

shown previously to result in significant benefits on an SMT architecture [120]

and involves co-scheduling threads to minimize competition for shared resources.

Since conflict misses are a significant source of performance degradation

for DCache sharing, we evaluated the impact of scheduling applications intelli-

gently on the cores instead of random mapping. Intelligent mapping involved

putting programs on a conjoined-core pair that would not cause as many con-

flict misses and hence lessen the degradation. For symbiotic scheduling with 8

threads, we found the degradation decreased by 20% for integer workloads and

25.5% for FP workloads.

VI.G A Unified Conjoined-Core Architecture

This section examines various combinations of FPU, crossbar, ICache,

and DCache sharing. For all these experiments, we assume a shared doubly-

banked ICache with a fetch-width of 16 bytes (similar to that used in Sec-

tion VI.E.1), I/O partitioned shared DCache (similar to that used in Section VI.F.2),

a fully-shared FPU and a shared crossbar input port for every conjoined-core pair.

Sharing ICache, DCache, as well as the crossbar are each assumed to have one

cycle extra overhead. We assume that each shared structure can be assertively

accessed. Assertive access for the I/O partitioned dual-ported DCache involves

accessing the other port (the one not assigned to the core) assertively. Table VI.G

133

Table VI.3: Results with multiple sharings.

Units Shared Perf. Degradation Core Area

Int Aps FP Aps Savings

Crossbar+FPU 0.97% 1.2% 23.1%

Crossbar+FPU+ICache 4.7% 3.9% 33.0%

Crossbar+FPU+DCache 6.1% 6.8% 45.2%

ICache+DCache 11.4% 7.6% 32.0%

Crossbar+FPU+ICache+DCache 11.9% 8.5% 55.1%

shows the resulting area savings and performance for various sharing combina-

tions. We map the applications to the cores such that “friendly” threads run on

the conjoined cores where possible. All performance numbers are for the worst

case when all cores are busy with threads.

The combination with all four types of sharing results in 38.1% core-

area savings (excluding crossbar savings). In absolute terms, this is equivalent

to the area occupied by 3.76 cores. If crossbar savings are included, then the

total area saved is equivalent to 5.14 times the area of a core. We observed a

11.9% degradation for integer workloads and 8.5% degradation for floating-point

workloads. Note that the degradation is significantly less than the sum of the

individual degradation values that we observed for each kind of sharing. This is

because a stall due to one bottleneck often either tolerates or obviates a stall due

to some other bottleneck.

Another attractive configuration utilizes only FPU and crossbar shar-

ing. This configuration provides a 23.1% reduction in core area while degrading

performance by around 1% in the worst case with all cores busy, and provides the

highest marginal utility for sharing. This configuration also has the advantage of

134

being simpler to implement than configurations that share caches.

The results in Table VI.G show that conjoined-core architectures can

give superior computational efficiency over conventional non-conjoined cores. The

area savings they give can be used to provide either reduced die area and hence in-

creased yield, or can be leveraged to provide a significant increase in performance

by implementing more cores in the same area.

Finally, besides providing an area efficiency advantage, conjoining can

also result in more power-efficient computation. Since memory cells can be engi-

neered to have low leakage, leakage power is primarily a function of the amount

of high-performance logic. Thus by sharing FPUs and/or the peripheral logic of

caches, the number of logic circuits and hence the leakage power of a multiproces-

sor can be significantly reduced. Moreover, dynamic power per instruction can

also be reduced since the crossbar interconnect lengths that computation must

traverse can be reduced by reducing the area of the cores.

VI.H Acknowledgment

The text of Chapter VI is in part a reprint of the material as it appears

in the proceedings of the Thirty-seventh International Symposium on Microarchi-

tecture (pp195-206, December 2004). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed the

research which forms the basis for Chapter VI.

135

Figure VI.2: (a)Floorplan of the original core (b)Layout of a conjoined-core pair,

both showing FPU routing. Routing and register files are schematic and not

drawn to scale

136

Figure VI.3: A die floorplan with crossbar sharing

Figure VI.4: Impact of ICache sharing for various threading levels

137

Figure VI.5: ICache sharing when no extra latency overhead is assumed, cache

structure bandwidth is not doubled, and cache is doubly banked

Figure VI.6: Impact of Dcache sharing for various threading levels

Figure VI.7: DCache sharing when no extra latency overhead is assumed

138

Figure VI.8: Impact of FPU sharing for various threading levels

Figure VI.9: Impact of private FP divide sub-units

Figure VI.10: Reducing crossbar area through width reduction and port sharing

139

Figure VI.11: ICache assertive access results when the original structure band-

width is not doubled

Figure VI.12: Fetch-combining results

Figure VI.13: Effect of assertive access and static assignment

VII

The Interconnect Problem and

the Need for Co-design

This chapter examines the area, power, performance, and design issues

for the on-chip interconnects on a chip multiprocessor, attempting to present a

comprehensive view of a class of interconnect architectures. It shows that the

design choices for the interconnect have significant effect on the rest of the chip,

potentially consuming a significant fraction of the real estate and power budget.

This research shows that designs that treat interconnect as an entity that can

be independently architected and optimized (“multi-core oblivious”) would not

arrive at the best multi-core design. Several examples are presented showing

the need for a holistic approach to design (or careful co-design). For instance,

increasing interconnect bandwidth requires area that then constrains the number

of cores or cache sizes, and does not necessarily increase performance. Also,

shared level-2 caches become significantly less attractive when the overhead of

the resulting crossbar is accounted for. A hierarchical bus structure is examined

which negates some of the performance costs of the assumed baseline architecture.

140

141

VII.A Related Work

There have been several proposals and implementations of high-performance

chip multiprocessor architectures [26, 59, 68, 69]. The proposed interconnect for

Piranha [26] was a fast, high-bandwidth switch. Cores in Hydra [59] are connected

to the L2 cache through a crossbar. In both cases, the L2 cache is fully shared.

IBM Power4 [68] has two cores sharing a triply-banked L2 cache. Connection is

through a crossbar-like structure called the CIU (core-interface unit).

In this chapter, we consider bus-based and crossbar-based interconnec-

tions to illustrate the value of holistic design. There have been recent proposals

for packet-based on-chip interconnection networks [61, 36, 107], i.e. networks

where data is sent in form of packets that are reassembled at at the destination.

Packet-based networks structure the top level wires on a chip and facilitate modu-

lar design. Modularity results in enhanced control over electrical parameters and

hence can result in higher performance or reduced power consumption. These

interconnections can be highly effective in particular environments where most

communication is local, explicit core-to-core communication. However, the cost

of distant communication is high. Due to their scalability, these architectures are

attractive for a large number of cores. The crossover point where these archi-

tectures become superior to the more conventional interconnects studied in this

chapter is not clear, and probably depends on implementation details.

There is a large body of related work evaluating tradeoffs between bus-

based and scalable shared memory multiprocessors, in the context of conventional

(multiple-chip) multiprocessors. Some earlier implementations of the intercon-

nection networks for multiprocessors have been described in [47, 133, 96, 113,

109, 48, 16, 94, 21]. However, on-chip interconnects have different sets of trade-

offs and design issues. We will show that on-chip interconnects can often affect

the number, size, and design of cores and memory, and vice versa. Thus, the

142

conclusions of those prior studies must be re-evaluated in the context of on-chip

multiprocessors with on-chip interconnects.

VII.B Interconnection Mechanisms

In this section, we detail three interconnection mechanisms that may

serve particular roles in on-chip interconnect hierarchy – a shared bus fabric

(SBF) that provides a shared connection to various modules that can source

and sink coherence traffic, a point-to-point link (P2P link) that connects two

SBFs in a system with multiple SBFs, and a crossbar interconnection system. In

the subsequent sections, we will demonstrate the need for co-design using these

mechanisms as a baseline.

Many different modules may be connected to these fabrics, which use

them in different ways. But from the perspective of the core, an L2 miss goes out

over the SBF to be serviced by higher levels of the memory hierarchy, another

L2 on the same SBF, or possibly an L2 on another SBF connected to this one

by a P2P link. If the core shares L2 cache with another core, there is a crossbar

between the cores/L1 caches and the shared L2 banks. Our initial discussion of

the SBF in this section assumes private L2 caches.

The results in this chapter are derived from a detailed model of a com-

plex system, which are described in the next few sections.

VII.B.1 Shared Bus Fabric

A Shared Bus Fabric is a high speed link needed to communicate data

between processors, caches, IO, and memory within a CMP system in a coherent

fashion. It is the on-chip equivalent of the system bus for snoop-based shared

memory multiprocessors [47, 133, 96]. We model a MESI-like snoopy write-

invalidate protocol with write-back L2s for this study [24, 68]. Therefore, the

143

Book

keeping

AB
SB
RB
DB

D-arb A-arb

L2

Core
(incl. I$/D$)

Figure VII.1: The assumed shared bus fabric for our interconnection study

SBF needs to support several coherence transactions (request, snoop, response,

data transfer, invalidates, etc.) as well as arbitrate access to the corresponding

buses. Due to large transfer distances on the chip and high wire delays, all buses

must be pipelined, and therefore unidirectional. Thus, these buses appear in

pairs; typically, a request traverses from the requester to the end of one bus,

where it is queued up to be re-routed (possibly after some computation) across a

broadcast bus that every node will eventually see, regardless of their position on

the bus and distance from the origin. In the following discussion a bidirectional

bus is really a combination of two unidirectional pipelined buses.

We are assuming, for this discussion, all cores have private L1 and L2

caches, and that the shared bus fabric connects the L2 caches (along with other

units on the chip and off-chip links) to satisfy memory requests and maintain

coherence. Below we describe a typical transaction on the fabric.

144

Typical transaction on the SBF

A load that misses in the L2 cache will enter the shared bus fabric to

be serviced. First, the requester (in this case, one of the cores) will signal the

central address arbiter that it has a request. Upon being granted access, it sends

the request over an address bus (AB in Figure VII.1). Requests are taken off

the end of the address bus and placed in a snoop queue, awaiting access to the

snoop bus (SB). Transactions placed on the snoop bus cause each snooping node

to place a response on the response bus (RB). Logic and queues at the end of the

response bus collect these responses and generate a broadcast message that goes

back over the response bus identifying the action each involved party should take

(e.g., source the data, change coherence state). Finally, the data is sent over a

bidirectional data bus (DB) to the original requester. If there are multiple SBFs

(e.g., connected by a P2P link), the address request will be broadcast to the other

SBFs via that link, and a combined response from the remote SBF returned to

the local one, to be merged with the local responses.

Note that the above transactions are quite standard for any shared

memory multiprocessor implementing a snoopy write-invalidate coherence pro-

tocol [24].

Elements of the SBF

The composition of the SBF allows it to support all the coherence trans-

actions mentioned above. We now discuss the primary buses, queues and logic

that would typically be required for supporting these transactions. Figure VII.1

illustrates a typical SBF. Details of the modeled design are based heavily on the

shared bus fabric in the Power 5 multi-core architecture [69].

Each requester on the SBF interfaces with it via request and data queues.

It takes at least one cycle to communicate information about the occupancy of

145

the request queue to the requester. The request queue must then have at least

two entries to maintain the throughput of one request every cycle. Similarly, all

the units that can source data need to have data queues of at least two entries.

Requesters connected to the SBF include cores, L2 and L3 caches, IO devices,

memory controllers, and non-cacheable instruction units.

All requesters interface to the fabric through an arbiter for the address

bus. The minimum latency through the arbiter depends on (1) the physical

distance from the central arbiter to the most distant unit, and (2) the levels

of arbitration. Caches are typically given higher priority than other units, so

arbitration can take multiple levels based on priority. Distance is determined by

the actual floorplan. Since the address bus is pipelined, the arbiter must account

for the location of a requester on the bus in determining what cycle access is

granted. Overhead of the arbiter includes control signals to/from the requesters,

arbitration logic and some latches.

After receiving a grant from the central arbiter, the requester unit puts

the address on the address bus. Each address request goes over the address bus

and is then copied into multiple queues, corresponding to outgoing P2P links

(discussed later) and to off-chip links. There is also a local snoop queue that

queues up the requests and participates in the arbitration for the local snoop bus.

Every queue in the fabric incurs at least one bus cycle of delay. The minimum

size of each queue in the interconnect (there are typically queues associated with

each bus) depends on the delay required for the arbiter to stall further address

requests if the corresponding bus gets stalled. Thus it depends on the distance

and communication protocol to the device or queue responsible for generating

requests that are sinked in the queue, and the latency of requests already in

transit on the bus. We therefore compute queue size based on floorplan and

distance.

146

The snoop bus can be shared, for example by off-chip links and other

SBFs, so it also must be accessed via an arbiter, with associated delay and area

overhead. Since the snoop queue is at one end of the address bus, the snoop bus

must run in the opposite direction of the address bus, as shown in Figure VII.1.

Each module connected to the snoop bus snoops the requests. Snooping involves

comparing the request address with the address range allocated to that module

(e.g., memory controllers) or checking the directory (tag array) for caches.

A response is generated after a predefined number of cycles by each

snooper, and goes out over the response bus. The delay can be significant, be-

cause it can involve tag-array lookups by the caches, and we must account for

possible conflicts with other accesses to the tag arrays. Logic at one end of the

bidirectional response bus collects all responses and broadcasts a message to all

nodes, directing their response to the access. This may involve sourcing the data,

invalidating, changing coherence state, etc. Some responders can initiate a data

transfer on a read request simultaneously with generating the snoop response,

when the requested data is in appropriate coherence state. The responses are

collected in queues. All units that can source data to the fabric need to be

equipped with a data queue. A central arbiter interfacing with the data queues

is needed to grant one of the sources access to the bus at a time.

Bidirectional data buses source data. They support two different data

streams, one in either direction. Data bandwidth requirements are typically high.

It should be noted that designs are possible with fewer buses, and the

various types of transactions multiplexed onto the same bus. However, that would

require higher bandwidth (e.g., wider) buses to support the same level of traffic at

the same performance, so the overheads are unlikely to change significantly. We

assume for the purpose of this study that only the above queues, logic and buses

form a part of the SBF and contribute to the interconnection latency, power, and

147

area overheads.

VII.B.2 P2P Links

If there are multiple SBFs in the system, the connection between the

SBFs is accomplished using P2P links. Multiple SBFs might be required to

increase bandwidth, decrease signal latencies, or to ease floorplanning (all con-

nections to a single SBF must be on a line). For example, if a processor has 16

cores as shown in Figure VII.3, it becomes impossible to maintain die aspect

ratio close to 1 unless there are two SBFs each supporting 8 cores.

Each P2P link should be capable of transferring all kinds of transactions

(request/response/data) in both directions. Each P2P link is terminated with

multiple queues at each end. There needs to be a queue and an arbiter for each

kind of transaction described above.

VII.B.3 Crossbar Interconnection System

The previous section assumed private L2 caches, with communication

and coherence only occurring on L2 misses. However, if our architecture allows

two or more cores to share L2 cache banks, a high bandwidth connection is

required between the cores and the cache banks. This is typically accomplished

by using a crossbar. It allows multiple core ports to launch operations to the L2

subsystem in the same cycle. Likewise, multiple L2 banks are able to return data

or send invalidates to the various core ports in the same cycle.

The crossbar interconnection system consists of crossbar links and cross-

bar interface logic. A crossbar consists of address lines going from each core to

all the banks (required for loads, stores, prefetches, TLB misses), data lines going

from each core to the banks (required for writebacks) and data lines going from

every bank to the cores (required for data reload as well as invalidate addresses).

148

Core

L2 bank

AB(one per core)

DoutB(one per core)

DinB(one per bank)

Figure VII.2: A typical crossbar

A typical implementation, shown in Figure VII.2, consists of one address bus

per core from which all the banks feed. Each bank has one outgoing data bus

from which all the cores feed. Similarly, corresponding to each write port of a

core is an outgoing data bus that feeds all the banks.

Crossbar interface logic presents a simplified interface to the instruction

fetch unit and the Load Store Unit in the cores. It typically consists of a load

queue corresponding to each core sharing the L2. The load queue sends a request

to the L2 bank appropriate to the request, where it is enqueued in a bank load

queue (BLQ) (one per core for each bank to avoid conflict between cores accessing

the same bank). The BLQs must arbitrate for the L2 tags and arrays, both among

the BLQs, as well as with the snoop queue, the writeback queue, and the data

reload queue — all of which may be trying to access the L2 at the same time.

After L2 access (on a load request), the data goes through the reload queue, one

per bank, and over the data bus back to the core. The above description of the

crossbar interface logic is based on the crossbar implementation (also called core

interface unit) in Power4 [68] and Power5 [69].

Note that even when the caches (or cache banks) are shared, an SBF is

required to maintain coherence between various units in the CMP system.

149

Table VII.1: Design parameters for wires in different metal planes

Metal Pitch Signal Repeater Repeater Latch Latch Channel Leakage Gate Leakage

Plane (µm) Pitch Spacing Width Spacing Height per repeater per repeater

Plane (µm) (µm) (mm) (µm) (mm) (µm) (uA) (uA)

1X 0.2 0.5 0.4 0.4 1.5 120 10 2

2X 0.4 1.0 0.8 0.8 3.0 60 20 4

4X 0.8 2.0 1.6 1.6 5.0 30 40 8

8X 1.6 4.0 3.2 3.2 8.0 15 80 10

VII.C Modeling Area, Power, and Latency

Both wires and logic contribute to interconnect overhead. This section

describes our methodology for computing various overheads for 65nm technology.

The scaling of overheads with technology as well as other design parameters is

discussed in Section VII.G.

VII.C.1 Wiring Area Overhead

We address the area overheads of wires and logic separately.

The latency, area, and power overhead of a metal wire depends on the

metal layer used for that wire. Technology that we consider facilitates 10 layers of

metal, 4 layers in 1X plane and 2 layers in the higher planes (2X, 4X and 8X) [74].

The 1X metal layers are typically used for macro-level wiring [74]. Wiring tracks

in higher layers of metal are very expensive and only used for time-critical signals

running over a considerable distance (several millimeters of wire).

We evaluate crossbar implementations for 1X, 2X and 4X metal planes

where both data and address lines use the same metal plane. For our SBF

evaluations, the address bus, snoop bus, and control signals always use the 8X

plane. Response buses preferably use the 8X plane, but can use the 4X plane.

Data buses can be placed in the 4X plane (as they have more relaxed latency

considerations). All buses for P2P links are routed in the 8X plane.

The area occupied by a bus is determined by the number of wires times

150

the effective pitch of the wires times the length. We account for the case where

the area of one bus (partially) subsumes the area of some other bus in a different

plane. When buses are wired without logic underneath, repeaters and latches are

placed under the buses without incurring any additional area overhead. However,

when interconnection buses are routed over array structures (e.g. cache arrays,

directories etc.), we account for the fact that the sub-arrays (or memory macros)

have to be shifted to make space for the placement of wire repeaters and latches.

In this case the minimal repeater and latch spacing is an essential parameter

determining the area overhead. We believe that 4X and 8X wires can be routed

over memory arrays. However, in Section VII.F, we also evaluate routing 1X and

2X over memory, even though we believe it to be technologically more difficult.

Table VII.C shows the signal wiring pitch for wires in different metal

planes for 65nm. These pitch values are estimated by conforming to the consid-

erations mentioned in [125].

The table also shows the minimum spacing for repeaters and latches as

well as their heights for computing the corresponding area overheads. We model

the height of the repeater macro to be 15 µm. The height of the latch macro

given in the table includes the overhead of the local clock buffer and local clock

wiring, but excludes the overhead of rebuffering the latch output which is counted

separately. The values in Table VII.C are for a bus frequency of 2.5 GHz and

a bus voltage of 1.1 V. Analysis for different bus frequencies can be found in

Section VII.G.

VII.C.2 Logic Area Overhead

Area overhead due to interconnection-related logic comes primarily from

queues. Queues are assumed to be implemented using latches. We estimate the

area of a 1-bit latch used for implementing the queues to be 115 µm2 for 65nm

151

technology [132]. This size includes the local clock driver and the area overhead

of local clock distribution. We also estimated that there is a 30% overhead in area

due to logic needed to maintain the queues (such as head, tail pointers, queue

bypass, overflow signaling, request/grant logic, etc.) [33].

The interconnect architecture can typically be designed such that buses

run over interconnection-related logic. The area taken up due to wiring is usually

big enough that it (almost) subsumes the area taken up by the logic.

Because queues overwhelmingly dominate the logic area, we ignore the

area (but not latency) of multiplexors and arbiters. It should be noted that the

assumed overheads can be reduced by implementing queues using custom arrays

instead of latches.

VII.C.3 Power

Power overhead comes from wires, repeaters, and latches. For calculat-

ing dynamic dissipation in the wires, we optimistically estimate the capacitance

per unit length of wire (for all planes) to be 0.2 pF/mm [66]. Repeater capac-

itance is assumed to be 30% of the wire capacitance [15]. The dynamic power

per latch is estimated to be 0.05 mW per latch for 2.5 GHz at 65 nm [132]. This

includes the power of the local clock buffer and the local clock distribution, but

does not include rebuffering that typically follows latches.

Total dynamic power of a bus would depend on utilization of the bus

as well as the efficacy of clock gating. We assume that in 30% of the unused

cycles the latches will be gated off, to be consistent with clock gating efficiencies

typically quoted for high-end microprocessors [33]. Even though the cycles of

inactivity are easier to predict in the fabric than in the core, the physical distance

between latches of the neighboring clock stages is much larger in the fabric, which

complicates the timing of the clock gate signals.

152

Repeater leakage is computed using the parameters given in Table VII.C.

For latches, we estimate channel leakage to be 20uA per bit in all planes (again

not counting the repeaters following a latch). Gate leakage for a latch is esti-

mated to be 2uA per bit in all planes [15]. For computing dynamic and leakage

power in the queues, we use the same assumptions as for the wiring latches.

VII.C.4 Latency

The latency of a signal traveling through the interconnect is primarily

due to wire latencies, wait time in the queues for access to a bus, arbitration

latencies, and latching that is required between stages of interconnection logic.

Latency of wires is determined by the spacing of latches. Spacing between latches

for wires is given in Table VII.C.

Arbitration can take place in multiple stages (where each stage involves

arbitration among the same priority units) and latching needs to be done between

every two stages. For 65 nm technology, we estimate that no more than four

units can be arbitrated in a cycle. The latency of arbitration also comes from

the travel of control between a central arbiter and the interfaces corresponding

to request/data queues. Other than arbiters, every time a transaction has to be

queued, there is at least a bus cycle of delay — additional delays depend on the

utilization of the outbound bus.

VII.D Modeling Multi-core Architectures

For this study, we consider a stripped version of out-of-order Power4-

like cores [68]. We determine the area taken up by such a core at 65nm to be

10mm2. The area and power determination methodology is similar to the one

presented in Chapter IV. The power taken up by the core is determined to be

10W, including leakage.

153

For calculating on-chip memory sizes, we use the Power5 cache density,

as measured from die photos [69], scaled to 65nm. We determine it to be 1 bit

per square micron, or 0.125MB/mm2. For the purpose of this study, we consider

L2 caches as the only type of on-chip memory. We do not assume off-chip L3

cache, but in 65nm systems, it is likely that L3 chips would be present as well

(the number of L3 chips would be limited, however, due to the large number

of pins that every L3 chip would require), but we account for that effect using

somewhat optimistic estimates for effective bandwidth and memory latency. Off-

chip bandwidth was modeled carefully based on pincount [15] and number of

memory channels (Rambus RDRAM interface was assumed).

Our models include the effects of not only L2 banks and memory con-

trollers, but also DMA controllers and Non-cacheable Instruction Units (NCUs)

on the die that can generate transactions. NCUs handle instructions like syncs,

eieios (enforce inorder execution of I/Os), TLB invalidates, partial read/writes,

etc., that are not cached and are directly put on the fabric. Each core has a

corresponding NCU. The assumptions about these units are taken from Power

4 and Power 5 [68, 69] designs. We simulate a MESI-like [106, 68] coherence

protocol, and all transactions required by that protocol are faithfully modeled in

our simulations. We also model weak consistency [42] for the multiprocessor, so

there is no impact on CPI due to the latency of stores and writebacks.

For performance modeling, we use a combination of detailed functional

simulation and queuing simulation tools [92]. The functional simulator is used for

modeling the memory subsystem as well as the interconnection between modules.

It takes instruction traces from an SMP system as input and generates coherence

statistics for the modeled memory/interconnect sub-system. The queuing sim-

ulator takes as input the modeled subsystem, its latencies, coherence statistics

and the inherent CPI of the modeled core assuming perfect L2. It then generates

154

the CPI of the entire system, accounting for real L2 miss rates and real intercon-

nection latencies. Traffic due to syncs, speculation, and MPL (message passing

library) effects is accounted for as well. The tools and our interconnection models

have been validated against a real, implemented design.

The cache access times are calculated using assumptions similar to those

made in CACTI [119]. Memory latency is set to 500 cycles. The average CPI

of the modeled core over all the workloads that we use, assuming perfect L2, is

measured to be 2.65. Core frequency is assumed to be 5GHz for the 65nm studies.

Buses as well as the L2 are assumed to be clocked at half the CPU speed.

VII.D.1 Workload

All our performance evaluations have been done using commercial work-

loads, including TPC-C, TPC-W, TPC-H, Notesbench and others further de-

scribed in [92]. The server workloads represent such market segments as on-line

transaction processing (OLTP), business intelligence, enterprise resource plan-

ning, web serving, and collaborative groupware. These applications are large and

function rich; they use a large number of operating system services and access

large databases. These characteristics make the instruction and data working

sets large. These workloads are also inherently multiuser and multitasking, with

frequent read-write sharing.

We use PowerPC instruction and data reference traces of the workloads

running under AIX. The traces are taken in a non-intrusive manner by attaching

a hardware monitor to a processor [43, 92]. This enables the traces to be gathered

while the system is fully loaded with the normal number of users, and captures

the full effects of multitasking, data sharing, interrupts, etc. These traces contain

even DMA instructions and non-cacheable accesses.

155

VII.E Shared Bus Fabric: Overheads and Design Issues

This section examines the various overheads of the shared bus fabric,

and the implications this has for the entire multi-core architecture. We examine

floorplans for several design points, and characterize the impact on the overall

design and performance of the processor of the area, power, and latency over-

heads. This section demonstrates that the overheads of the SBF can be quite

significant. It also illustrates the tension between the desire to have more cores,

more cache, and more interconnect bandwidth, and how that plays out in total

performance.

In this section, we assume private L2 caches and that all the L2s (along

with NCUs, memory controllers, and IO Devices) are connected using a shared

bus fabric. We consider architectures with 4, 8, and 16 cores. Total die area

is assumed to be constant at 400mm2 due to yield considerations. Hence, the

amount of L2 per core decreases with increasing number of cores. For 4, 8 and

16 cores, we evaluate multiple floorplans and choose those that maximized cache

size per core while maintaining a die aspect ratio close to 1. In the default case,

we consider the width of the address, snoop, response and data buses of the

SBF to be 7, 12, 8, 38 (in each direction) bytes respectively — these widths are

determined such that no more than 0.15 requests get queued up, on average,

for the 8 core case. We also evaluate the effect of varying bandwidths. We can

lay out 4 or 8 cores with a single SBF, but for 16 cores, we need two SBFs

connected by a P2P link. In that case, we model two half-width SBFs and a 76

byte wide P2P link. Figure VII.3 shows the floorplans arrived at for the three

cases. The amount of L2 cache per core is 8MB, 3MB and 0.5MB for 4, 8 and 16

core processors respectively. It must be mentioned that the 16-core configuration

is somewhat unrealistic for this technology as it would result in inordinately

high power consumption. However, we present the results here for completeness

156

reasons.

Wires are slow and hence cannot be clocked at very high speeds without

inserting an inordinately large number of latches. For our evaluations, the SBF

buses are cycled at half the core frequency.

VII.E.1 Area

The area consumed by the shared bus fabric comes from wiring and

interconnection-related logic, as described in Section VII.C. Wiring overhead

depends on the architected buses and the control wires that are required for flow

control and arbitration. Control wires are needed for each multiplexor connected

to the buses and signals to and from every arbiter. Flow control wires are needed

from each queue to the units that control traffic to the queue.

Since data buses run in the 4X plane, the area taken up by (76-byte)

data buses is calculated as 2µm × 76 × 8 × length, which results in 24.32mm2.

Address (7 bytes), snoop (12 bytes), response buses (8 bytes) as well as control

wires (at least 198 of them for the stated control architecture for 8 cores) that

run in the 8X plane can be routed over the data buses. In this case, the area

overhead of the data buses is subsumed by that of the remaining buses. For

16 cores, the P2P links do not result in direct area overhead because they can

be routed over L2 caches. However, reduction in the cache density (due to bus

latches and repeaters) does result in an area overhead.

Figure VII.4 shows the wiring area overhead for various processors. The

graph shows the area overhead due to architected wires, control wires, and the

total. We see that area overhead due to interconnections in a CMP environment

can be significant. For the assumed die area of 400mm2, area overhead for the

interconnect with 16 cores is 13%. Area overhead for 8 cores and 4 cores is 8.7%

and 7.2% of the die area, respectively. Considering that each core is 10mm2, the

157

area taken up by the SBF is sufficient to place 3-5 extra cores or 4-6 MB of extra

cache.

The graph also shows that area overhead increases quickly with the

number of cores. This result assumes constant width architected buses, even

when the number of cores is increased. If the effective bandwidth per core is kept

constant, overhead would increase even faster.

The overhead due to control wires is high. Control takes up at least

37% of SBF area for 4 cores and at least 62.8% of the SBF area for 16 cores.

This is because the number of control wires grows linearly with the number of

connected units, in addition to the linear growth in the average length of the

wires. Reducing SBF bandwidth does not reduce the control area overhead,

thus it constrains how much area can be regained with narrower buses. Note

that this argues against very lightweight (small, low performance) cores on this

type of chip multiprocessor, because the lightweight core does not amortize the

incremental cost to the interconnect of adding each core. Interconnect area due

to logic is primarily due to the various queues, as described in Section VII.C.

Table VII.E.1 shows the area overhead due to interconnect-related logic and the

corresponding breakdown. The area taken up by interconnection-related logic

increases superlinearly with the number of connected units (note that the number

of connected units is 14, 22 and 38 respectively for 4, 8 and 16 core processors).

When going from 8 to 16 cores, the logic-area overhead jumps because the queues

are required to support two SBFs and a P2P link. Note, however, that the logic

can typically be placed underneath the SBF wires. Thus, under these assumptions

the SBF area is dominated by wires, but only by a small amount.

158

Table VII.2: Interconnection-related Logic overhead

Number of cores 4 8 16

Number of data queue latches 28672 45056 92160

Number of request queue latches 3136 4928 8512

Number of snoop queue latches 336 336 896

Number of latches for response bus queue 1680 1680 6720

Total number of latches 33824 52000 108288

Area(in mm2) 5.6 8.6 17.94

VII.E.2 Power

The power dissipated by the interconnect is the sum of the power dissi-

pated by wires and the logic. Figure VII.5 shows a breakdown of the total power

dissipation by the interconnect.

The graph shows that total power due to the interconnect can be sig-

nificant. The interconnect power overhead for the 16-core processor is more than

the combined power of two cores. It is equal to the power dissipation of one full

core even for the 8 core processor. Power increases superlinearly with the number

of connected units. This is because of the (at least linear) increase in the number

of control wires as well as the (at least linear) increase in the number of queuing

latches. There is also a considerable increase in the bus traffic with the growing

number of cores. Half the power due to wiring is leakage (mostly from repeaters).

Contrary to popular belief, interconnect power is not always dominated

by the wires. The power due to logic can be, as in this case, more than the power

due to wiring.

VII.E.3 Performance

For the chip multiprocessor consisting of four cores, the end to end

latency of the architected buses, except the data buses, would be 6 processor

159

cycles (as three latches would be required for 20mm wires running in the 8X

plane). Similarly, the latency of the data buses (routed in the 4X plane) would

be 12 processor cycles.

Address arbitration would take 8 processor cycles, but the request trans-

fer between the central address arbiter and the request queues would take 8 pro-

cessor cycles (two latches each way – we assume central arbiters to be placed

around the middle of the chip). Every queue would take at least one bus cycle.

Snoop response generation will take at least 20 processor cycles (cache tag access

and two latches). Generating a final response will take 4 cycles (two latches).

We also estimate that an 8MB cache can be accessed in 46 cycles (includes array

access time, time to go through queues, arbitration overhead for getting access to

the array, etc.; note that L2 is assumed to be cycled at half the core frequency).

Accounting for all arbitration, bus latencies, queues, and the cache access, the

minimum (no contention) latency of a load is 124 cycles for a four core multi-core.

Even under these optimistic assumptions, the interconnect accounts for over half

the total latency to the L2 cache.

Figure VII.6 shows the per-core performance for 4, 8 and 16 core archi-

tectures, both assuming no interconnection overhead (zero latency interconnec-

tion) and with interconnection overheads modeled carefully. Single-thread per-

formance (even assuming no interconnection overhead) goes down as the number

of cores increases due to the reduced cache size per core. If interconnect overhead

is considered, then the performance decreases much faster. In fact, performance

overhead due to interconnection is more than 10% for 4 cores, more than 13% for

8 cores and more than 26% for 16 cores.

In results to this point, we keep bus bandwidth constant. In Fig-

ure VII.7, we show the single-thread performance of a core in the 8 core processor

case, when the width of the architected buses is varied by factors of two. The

160

graph also shows the real estate saved compared to the baseline. We see that

with wide buses, the area costs are significant, and the incremental performance is

minimal. On the other hand, with narrow buses, the area saved by small changes

in bandwidth is small, but the performance impact is significant.

Alternatively, we could put the area saved through bandwidth reduction

to use. We ran simulations that assume that we put that area back into the

caches. We find that over certain ranges, if the bandwidth is reduced by small

factors, the performance degradation can be recovered using bigger caches. For

example, decreasing the bandwidth by a factor of 2 decreases the performance by

0.57%. But it saves 8.64mm2. This can be used to increase the per-core cache

size by 135KB. When we ran simulations using new cache sizes, we observed a

performance improvement of 0.675%. Thus, we can decrease bus bandwidth and

improve performance (if only by small margins in this example), because the

resulting bigger caches protect the interconnect from a commensurate increase

in utilization. On the other hand, when bandwidth is decreased by a factor

of 8, performance decreases by 31%, while the area it saves is 15.12mm2. The

area savings is sufficient to increase per core cache size by only 240KB. The

increase in cache size was not sufficient to offset the performance loss in this case.

Similarly, when doubling interconnect bandwidth over our baseline configuration,

total performance decreased by 1.2% due to the reduced cache sizes.

This demonstrates the importance of co-designing the interconnect and

memory hierarchy. It is neither true that the biggest caches nor the widest

interconnect give the best performance; designing each of these subsystems inde-

pendently is unlikely to result in the best design. Similarly, the core itself should

be co-architected with the caches and interconnect, but for this study we treat

the cores as a constant. Chapter V presented our explorations with core designs.

161

VII.F Shared Caches and the Crossbar

The previous section presented evaluations with private L1 and L2

caches for each core, but many proposed chip multiprocessors have featured

shared L2 caches, connected with crossbars. Shared caches allow the cache space

to be partitioned dynamically rather than statically, typically improving overall

hit rates. Also, shared data does not have to be duplicated. To fully understand

the tradeoffs between private and shared L2 caches, however, we find that it is

absolutely critical that we account for the impact of the interconnect.

VII.F.1 Area and power overhead

The crossbar, shown in Figure VII.2, connects cores (with L1 caches)

to the shared L2 banks. The data buses are 32 bytes while the address bus is 5

bytes. Lower bandwidth solutions were found to adversely affect performance and

render sharing highly unfruitful. In this section we focus on an 8-core processor

with 8 cache banks, giving us the options of 2-way, 4-way, and full (8-way) sharing

of cache banks. Crossbar wires can be implemented in the 1X, 2X or 4X plane.

For almost 2x reduction in the latency, the wire thickness doubles every time we

go to a higher metal plane.

Figure VII.8 shows the area overhead for implementing different mech-

anisms of cache sharing. The area overhead is shown for two cases – one where

the crossbar runs between cores and L2, and the other where the crossbar can be

routed over L2. When the crossbar is placed between the L2 and the cores, inter-

facing is easy, but all wiring tracks result in area overhead. When the crossbar is

routed over L2, area overhead is only due to reduced cache density to accommo-

date repeaters and latches. However, the implementation is relatively complex as

vertical wires are needed to interface the core with the L2. We show the results

assuming that the L2 density is kept uniform (i.e. even if repeaters/latches are

162

dropped only over the top region of the cache, sub-arrays are displaced even in

the other regions to maintain uniform density).

Cache sharing carries a heavy area overhead. If the total die area is

around 400 mm2, then the area overhead for an acceptable latency (2X) is 11.4%

for 2-way sharing, 22.8% for four-way sharing and 46.8% for full sharing (nearly

half the chip!). Overhead increases as we go to higher metal layers due to in-

creasing signal pitch values. When we assume that the crossbar can be routed

over L2, area overhead is still substantial; however, in that case it improves as

we move up in metal layers. At low levels the number of repeater/latches, which

must displace cache, is highest.

The point of sharing caches is to get the effect of having more cache

space. In this case, the cores can gain significant real cache space by foregoing

sharing, raising doubts about whether sharing has any benefit. This is seen even

more clearly in the next subsection.

The high area overhead again suggests that issues of interconnect/cache/core

co-design must be considered. For crossbars sitting between cores and L2, just

two-way sharing results in an area overhead equivalent to more than the area of

two cores. Four-way sharing results in an area overhead of 4 cores. An 8-way

sharing results in an area overhead of 9 cores. If the same area were devoted to

caches, one could instead put 2.75 MB, 5.5 MB and 11.6 MB of extra caches,

respectively.

Figure VII.9 shows the corresponding power overhead. A breakdown

is also provided for various sources of power dissipation. The graph shows that

power overhead due to crossbars is very significant. The overhead can be more

than the power taken up by three full cores for a completely shared cache and

more than the power of one full core for 4-way sharing. Even for 2-way sharing,

power overhead is more than half the power dissipation of a single core. Hence,

163

even if power is the primary constraint, the benefits of the shared caches must

be weighed against the possibility of more cores or significantly more cache.

Leakage is a smaller fraction of the total power for crossbars than for

SBFs; however, it is still significant — 18-20% depending on the metal layer.

VII.F.2 Performance

Because of the high area overhead for cache sharing, the total amount of

on-chip caches decreases with sharing. We performed our evaluations for the most

tightly packed floorplans that we could find for 8-core processors with different

levels of sharing. When the crossbar wires are assumed to be routed in the 2X

plane between cores and L2, total cache size is 20MB, 14MB and 4MB respectively

for 2-way, 4-way and full sharing. When crossbar is assumed to be routed over

L2 (and assuming uniform cache density), the total cache size was 22MB for 4X

and 18.2MB for 2X. We also conducted experiments assuming no crossbar area

overhead to isolate the benefit of sharing. Figure VII.10 shows results for a fixed

on-chip cache size (i.e. assuming no crossbar area overhead – crossbar latency

overhead is assumed, however). Figure VII.11 presents the results for a fixed die

area and cache sizes varied accordingly (i.e. taking into account crossbar area

overhead).

Figure VII.10 shows that cache sharing, in general, results in higher

performance than just having private caches if interconnection area overheads

are not considered. It also shows that crossbar performance is very sensitive to

the metal plane used to implement it.

Figure VII.11, assumes a constant die area and considers interconnec-

tion area overhead. It shows that performance, even without considering the

interconnection latency overhead (and hence purely the effect of cache sharing),

either does not improve or improves only by a slight margin. This is due to

164

reduced size of on-chip caches to accommodate the crossbar. If interconnect la-

tencies are accounted for (higher sharing means longer crossbar latencies), sharing

degrades performance even between two cores. Note that in this case, the con-

clusion reached ignoring interconnect area effects is opposite that reached when

those effects are considered.

Note that performance loss due to increased L2 hit latency can be mit-

igated by using L2 latency hiding techniques, like overlapping of L2 accesses or

prefetching. Also, crossbar area overhead can be reduced (and hence perfor-

mance improved) by implementing caches with non-uniform density. In fact, we

observed that two-way and four-way sharing improves performance for the 4X

crossbar implementation if the crossbar is routed over memory and the L2 is al-

lowed to have non-uniform density. Sharing might also result in benefit for other

workloads with different working set and sharing behavior. Also, the smaller the

relative frequency of the bus, the less prohibitive it is to implement L2 with large-

scale sharing. For example, if the crossbars are routed over L2 and are clocked

at one-fourth the core frequency, we observe that two-way and four-way sharing

improves performance on the 4X metal plane.

However, our results definitely show that having shared caches becomes

significantly less desirable than previously accepted if interconnection overheads

are considered. We believe that the conclusion holds, in general, for uniform

access time caches, and calls for evaluation of caching strategies with careful

consideration of interconnect overheads. Further analysis needs to be done for

intelligent NUCA (non-uniform cache access) caches [78].

The results also emphasize the need for holistic design as the best pro-

cessor designs are not the ones that ignored interconnection costs.

165

VII.G Scaling with Technological Parameters

All results to this point in the chapter have been carefully parameterized

to the 65 nm process. This section extends those results to future technologies,

and also considers the effect of deeper pipelining (i.e., faster CPU clocks).

As technology shrinks, the repeater and latch spacings decrease, thereby

increasing the latency overhead due to wires. Going to deeper pipelines/faster

clocks also decreases repeater and latch spacings, as well as increased logic over-

head (in terms of cycles). Technology scaling and deeper pipelines also increase

perceived memory and cache access times. We used ITRS scaling trends to com-

pute the latencies for 45nm and 32nm technologies. Figure VII.12 shows the

results for a fixed die area (400 mm2) for 65nm, 45nm and 32nm. The results

are shown for the 8-core case. Each core has a private cache of 3MB, 6MB and

10MB respectively for the three technologies. We assume the base CPI of the

core (apart from memory behavior) to remain the same for this study.

Figure VII.12 shows that with deeper pipelines for the same technology,

the interconnection overhead on performance increases. For example at 65 nm, if

the pipeline depth is changed from 26FO4 to 10FO4, the interconnection overhead

increases by 30%. But for 45 nm, the corresponding change is 55%, and for

32nm, 44.4%. Also, for the same die area, and for the same pipeline depth,

interconnection overhead increases with technology. Overhead increase is due

to increased latencies, increased arbitration overhead, etc. Note that increased

cache size for better technologies leads to higher hit rates as well as reduced traffic

on the interconnect, but it is not sufficient to hide the effect of the increased

interconnect latencies. It must be mentioned, however, that overall performance

improves because of higher frequencies.

166

VII.H An Example Holistic Approach to Interconnection

The intent of this section is to apply one lesson learned from the high

volume of data gathered in the research described in this chapter. Our intercon-

nect architectures to this point were highly driven by layout. The SBF spans the

width of the chip, allowing us to connect as many units as possible in a straight

line across the chip. However, the latency overheads of a long SBF encourage us

to consider alternatives. This section describes a more hierarchical approach to

interconnects, which can exploit shorter buses with shorter latencies when traffic

remains local. We will be considering the 8-core processor again.

The effectiveness of such an approach will depend on the probability

that an L2 miss is serviced on a local cache (an L2 connected to the same SBF),

rather than a cache on a remote SBF. We will refer to this probability as “thread

bias”. A workload with high thread bias means that we can identify and map

“clusters” of threads that principally communicate with each other on the same

SBF.

In this section, we split the single SBF that spans the chip into two

SBFs, with a P2P link between them. Local accesses benefit from decreased

distances. Remote accesses suffer because they travel the same distances and see

additional queuing and arbitration overheads between interconnects.

Figure VII.14 shows the performance of the split SBF for various thread

bias levels. The SBF is split vertically into two, such that each SBF piece now

supports 4 cores, 4 NCUs, 2 memory controllers and 1 IO Device. The X-axis

shows the thread bias in terms of the fraction of misses satisfied by an L2 con-

nected to the same SBF. A 25% thread bias means that one out of four L2

misses are satisfied by an L2 connected to the same SBF piece. These results

are obtained through statistical simulation by synthetically skewing the traffic

pattern.

167

The figure also shows the system performance for a a single monolithic

SBF (the one used in previous sections). As can be seen, if thread bias is more

than 17%, the performance of the split SBF can overtake performance of a mono-

lithic SBF. Note that 17% is lower than the statistical probability of locally sat-

isfying an L2 miss assuming uniform distribution (3/7). Hence, the split SBF, in

this case, is clearly a good idea.

VII.I Acknowledgment

The text of Chapter VII is in part a reprint of the material as appears

in the proceedings of the Thirty-second International Symposium on Computer

Architecture (pp408-419, June 2005). The dissertation author was the primary

researcher and author and the co-authors involved in the submission directed,

supervised, and assisted the research which forms the basis for Chapter VII.

168

CORE

SBF IOX MCMC

NCU
L2Data

CORE

NCU

IOX MCMC

L2Data

CORE

NCU L2Data

CORE

NCUL2Data

CORE

NCU

CORE

NCU
L2Data L2Data

CORE

NCU

CORE

NCUL2Data L2Data

SBF IOX MCMC IOX MCMC

CORE

NCU

CORE

NCU
L2Data L2Data

CORE

NCU

CORE

NCUL2Data L2Data

L2Data

L2Data
CORE

SBF

NCU

CORE

NCU

CORE CORE

NCUNCU

CORE

SBF

NCU

CORE

NCU

CORE CORE

NCUNCU

L2Data

L2Data

L2Data L2Data

L2Data L2Data

L2Data
CORE

NCU

CORE

NCU

CORE CORE

NCUNCU

CORE

NCU

CORE

NCU

CORE CORE

NCUNCU

L2Data

L2Data

L2Data L2Data

L2Data

L2Data L2Data

MC IOX MC

MC IOX MC

Figure VII.3: Floorplans for 4, 8 and 16 core processors

169

0

10

20

30

40

50

60

4 8 16
Number of cores

A
re

a
o

ve
rh

ea
d

(m
m

^2
)

Architected busses Control wires Total overhead

Figure VII.4: Area overhead for shared bus fabric.

0

5

10

15

20

25

4 8 16
Number of cores

P
o

w
er

(W
)

leakage due to logic
latches

dynamic power due to
logic latches(w/o
gating)
leakage due to wiring
latches

leakage due to
repeaters

dynamic power due to
wiring latches(w/o
gating)
dynamic power due to
repeater cap(AF=0.2)

dynamic power due to
wire cap(AF=0.2)

Figure VII.5: Power overhead for shared bus fabric

170

0

1

2

3

4

5

6

7

8

9

4 8 16

Number of cores

C
P

I

0

5

10

15

20

25

30

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n
(%

)

performance assuming no interconnection overhead

performance with interconnection overhead

performance degradation

Figure VII.6: Performance overhead due to shared bus fabric.

0

5

10

15

20

25

30

35

40

45

2*base-
bandwidth

base-
bandwidth

base-
bandwidth/2

base-
bandwidth/4

base-
bandwidth/8

P
er

fo
rm

an
ce

 d
eg

ra
d

at
io

n
(%

)

-20

-15

-10

-5

0

5

10

15

20

A
re

a
S

av
in

g
s

(m
m

^2
)

performance degradation Saved Area

Figure VII.7: Trading off interconnection bandwidth with area.

0

50

100

150

200

250

300

350

400

1X 2X 4X
Metal plane

A
re

a
o

ve
rh

ea
d

 in
 m

m
^2

two-way sharing
four-way sharing
all-sharing
assuming crossbar can routed over L2

Figure VII.8: Area overhead for cache sharing – results for crossbar routed over

L2 assume uniform cache density.

171

0

5

10

15

20

25

30

35

40

45

1X 2X 4X

Metal Plane

P
o

w
er

(W
)

leakage due to wiring latches
leakage due to repeaters
dynamic power due to wiring latches
dynamic power due to repeaters
dynamic power due to wiring cap

Figure VII.9: Power overhead for cache sharing (the three bars, left to right,

correspond to 2-way, 4-way and full sharing).

4

4.5

5

5.5

6

6.5

7

all_private two_shared four_shared all_shared

C
P

I

performance assuming no interconnection overhead

performance with interconnection overhead(1X)

performance with interconnection overhead(2X)

performance with interconnection overhead(4X)

Figure VII.10: Evaluating cache sharing for a fixed cache size for different crossbar

implementations – no area overhead is assumed

172

3

5

7

9

11

13

15

all_private two_shared four_shared all_shared

C
P

I

performance assuming no interconnection overhead(2X crossbar
between cores and L2)

performance with interconnection overhead(2X crossbar between
cores and L2)

performance assuming no interconnection overhead(2X crossbar
routed over L2)

performance with interconnection overhead(2X crossbar routed
over L2)

performance with interconnection overhead(4X crossbar routed over
L2)

Figure VII.11: Evaluating cache sharing for a fixed die area – area overhead taken

into account

0

2

4

6

8

10

12

14

16

18

20

���
fo4

���
fo4

���
fo4

���
fo4

���
fo4

Pipeline Depth

C
P

I

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n

performace-degradation(65nm)

performace-degradation(45nm)

performace-degradation(32nm)

performance assuming no interconnection
overhead(65nm)
performance assuming interconnection
overhead(65nm)
performance assuming no interconnection
overhead(45nm)
performance assuming interconnection
overhead(45nm)
performance assuming no interconnection
overhead(32nm)
performance assuming interconnection
overhead(32nm)

Figure VII.12: Scaling of interconnection overhead with pipelining and technology

173

CORE

NCU

CORE

NCU
L2Data L2Data

CORE

NCU

CORE

NCUL2Data L2Data

MC IOXMC

CORE

NCU

CORE

NCU
L2Data L2Data

CORE

NCU

CORE

NCUL2Data L2Data

IOX MCMCP2PL

Figure VII.13: Hierarchical approach (splitting SBFs)

5.90

5.95

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6.40

6.45

0 10 20 30 40 50 60 70 80 90 100
Thread bias(%)

C
P

I

Split SBF Single monolithic SBF

Figure VII.14: Split vs Monolithic SBF

VIII

Summary and Future Work

The decreasing marginal utility of transistors and increasing complexity

of design has led to the advent of multi-core architectures. However, fundamen-

tal questions remain regarding the right form, methodology, and implementation

for multi-core designs. This thesis seeks to address these questions. Specifically,

the thesis shows that a “multi-core oblivious” design methodology, where the

processor subsystems are designed and optimized without any cognizance of the

overall chip multiprocessing systems that they would become parts of, results in

processors that are inefficient in terms of area and power. The thesis shows that

this inefficiency is due to the inability of such processors to react to (1) workload

diversity, (2) processor overprovisioning, and (3) high cost of connecting cores

and caches. This thesis recommends a holistic approach to multi-core design

where the processor subsystems are designed from the ground up to be parts of

chip multiprocessing system. Specifically, we propose single-ISA heterogeneous

multi-core architectures for adapting to workload diversity. These architectures

consist of multiple types of processing cores on the same die. These cores can all

execute the same ISA, but represent different points in the power-performance

continuum. Applications are mapped to cores in a way that the resources de-

mands of an application match the resources provided by the assigned core. This

174

175

results in increased computational efficiency and hence higher throughput for a

given area and/or power budget. We also proposed conjoined-core chip multi-

processing architectures. These architectures consist of multiple cores on the die

where the adjacent cores share the large, overprovisioned structures. Sharing

results in reduced area requirement for such processors at the cost of minimal

loss in performance. Reduced area, in turn, results in higher yield, lower leakage,

and potentially higher overall throughput per unit area. The thesis also stud-

ies the conventional interconnection mechanisms for multi-core architectures and

demonstrates that the interconnection overheads are significant enough that they

affect the number, size, and design of cores and caches. This thesis shows the

need to co-design the cores, caches, and the interconnects, and also presents an

example holistic approach to interconnection design for multi-core architectures.

VIII.A Holistic Design for Adaptability

We have demonstrated that heterogeneous multi-core architectures can

provide significant throughput advantages over equivalent-area homogeneous ar-

chitectures. This throughput advantage results from the ability of heterogeneous

processors to better exploit both variations in thread-level parallelism as well as

inter- and intra- thread diversity. We also propose and evaluate a set of thread

scheduling mechanisms to best realize the potential performance gain available

from heterogeneity.

Over a wide range of threading parallelism, the representative heteroge-

neous architecture we study perform 18% better on average than a homogeneous

CMP architecture of the same area on SPEC workloads. For an open system

with random task arrivals and exits, our results showed that heterogeneous ar-

chitectures can have much lower response times than corresponding homogeneous

configurations. Also, the heterogeneous systems were stable at job arrival rates

176

that were up to 43% higher.

Having a diversity of cores with varying resources and pipeline architec-

tures enables the system to efficiently leverage application diversity both at the

inter-thread and intra-thread level. Applications least able to derive significant

benefits from large and complex cores can instead be run on smaller, less complex

cores with much better area efficiencies.

This work demonstrates effective yet relatively simple task scheduling

mechanisms to best match the applications to cores. Our best core assignment

strategy achieves more than a 30% performance improvement over a naive heuris-

tic, while still being straightforward to implement.

This thesis also introduces and seeks to gain some insights into the

energy benefits available for the new architecture. The particular opportunity

examined is a single application switching among cores to optimize some function

of energy and performance.

We show that a sample heterogeneous multi-core design with four complexity-

graded cores has the potential to increase energy efficiency (defined as energy-

delay product, in this case) by a factor of three, in one experiment, without

dramatic losses in performance. Energy efficiency improvements significantly

outdistance chip-wide voltage/frequency scaling. It is shown that most of these

gains are possible even by using as few as two cores.

This work demonstrates that there can be great power advantage to

diversity within an on-chip multiprocessor, allowing that architecture to adapt to

the workload in ways that a uniform CMP cannot. A multi-core heterogeneous

architecture can support a range of execution characteristics not possible in an

adaptable single-core processor, even one that employs aggressive gating. Such an

architecture can adapt not only to changing demands in a single application, but

also to changing demands between applications, changing priorities or objective

177

functions within a processor or between applications, or even changing operating

environments.

The results indicate that not only is there significant potential for this

style of architecture, but that reasonable runtime heuristics for switching cores,

using limited runtime information, can achieve most of that potential.

The thesis also looks at the design of cores for a heterogeneous CMP.

The goal is to determine how to design a heterogeneous CMP for a given set of

workloads and given area and power budgets. We try to identify the characteris-

tics of the cores of a heterogeneous multiprocessor for the highest area or power

efficiency, and quantify the benefit that can be obtained by doing a design from

the ground up. We also present a methodology for the design and optimization

of the constituent processor cores given a set of target applications, as well as

specific design budgets. We call these cores non-monotonic if their performance

is not fully ordered over a range of different applications.

We show that the best way to design a heterogeneous CMP is not to

find individual cores that are well suited for the entire universe of applications,

but rather to tune the cores to different classes of applications. We find that cus-

tomizing cores to subsets of the workload results in processors that have greater

performance and power benefits than heterogeneous designs with an ordered set

of cores. An example such design outperformed the best homogeneous CMP de-

sign by 15.4% and the best fully-customized monotonic design by 7.5%. There

were performance and power improvements even for fully homogeneous workloads

as well as for single-threaded workloads. Benefits are even greater when power

and area budgets are increasingly constrained. Performance improvements of up

to 40% are shown.

Given current trends in processor design, we expect dynamic power (and

static power which is roughly proportional to area) to become increasingly con-

178

strained in the future, even in desktop and server markets. This means that the

value of custom core architecture, as well as the benefits of aggressive heterogene-

ity will only increase with time.

VIII.B Obviating Overprovisioning in Multi-cores

This thesis also examines conjoined core multiprocessing, selectively tar-

geting opportunities to share resources on an otherwise statically partitioned chip

multiprocessor. In particular, we seek to achieve area savings, dynamic power

reduction, and leakage reduction by sharing resources that have sufficient band-

width and/or capacity to service multiple cores. We add the additional constraint

that the sharing is topologically feasible with minimal impact to a conventional

core layout.

This thesis examines sharing of the floating point units, the crossbar

network ports, and the first-level ICache and DCache. We show that, given a

set of novel optimizations that reduce the negative impacts of this sharing, we

can reduce area requirements by more than 50%, while achieving performance

within 9-12% of conventional cores without conjoining. Alternatively, by only

sharing floating point units and crossbar ports, core area can be reduced by more

than 23% while achieving performance within 2% of conventional cores without

conjoining.

These gains are a combination of the inherent advantage of sharing re-

sources provisioned for worst-case utilization, and the application of new sharing

policies that allow high bandwidth access to these resources without additional

complexity.

179

VIII.C Interconnection-aware Co-design

This thesis presents the results of a detailed modeling of the impact of

the interconnection fabric on a hypothetical chip multiprocessor. These results

show that the architecture of the interconnect interacts with the design and ar-

chitecture of the cores and caches to a much greater degree than conventional

off-chip interconnections. Thus, any design that hopes to achieve high perfor-

mance or even energy efficiency needs to be the result of a careful co-design of

all three elements.

This study shows several examples of this need for co-design. The inter-

connect fabric itself is large and power-hungry, consuming resources that would

otherwise be available for more cores and caches. The interconnect, even without

the sharing of L2 caches, can take the area of three cores and the power of one.

We show examples where decreasing interconnection bandwidth can im-

prove performance, due to the constrained window on total resources. In the

same way, large caches can also decrease performance when they constrain the

interconnect to too small an area.

We also show that while it is generally believed that shared L2 caches

improve cache hit rates, we show that the implications on the interconnect are

extreme. For example, sharing four caches among four cores can require a quarter

of the chip area just for the crossbar network. When accounting for the area

overheads and the latency of the long interconnect, the desirability of shared L2

caches is significantly lower than is assumed if the interconnect is not accounted

for.

180

VIII.D Future Work

While the processor industry has seemingly embraced the technology

shift towards multi-core architectures, continued success along the multi-core

path requires addressing several fundamental research issues.

• Most applications and tools are written for the uniprocessor world. With

the advent of multi-core architectures, the entire computing stack – from the

applications, to the compilers, to the operating system, to the hardware –

needs to be re-examined and “fixed”. For example, scheduling is a difficult

task even for a uniprocessor OS. With the multiplicity of cores on the die,

the task of scheduling becomes very complex, more so if the cores are not

identical. Hence, new schedulers would be needed.

• Similarly, applications need to be parallelized in order to take advantage of

multi-core architectures. However, programmers today are used to writing

sequential programs. Writing parallel code would require changing the way

programmers are trained. Even if a programmer is trained to write par-

allel code, not all programs are (easily) parallelizable. So, new models of

programming or extracting parallelism might be needed.

• Alternatively, the complexity of parallelization can be pushed to the com-

piler. In that case, the compiler either needs to be able to automatically

parallelize the code, or annotate the code sufficiently so that hardware can

do the parallelization.

• Correspondingly, support needs to be present in hardware either to dynam-

ically parallelize/compile the programs, or enough support needs to be pro-

vided at the hardware level so that the job of the programmers and compiler

writers gets easier. For example, one major reason for the complexity of par-

allel code is due to the complexity of locking and synchronization. Hardware

181

support can be possibly be provided for lock-free synchronization or trans-

actional style of programming.

• One question that needs to be addressed also is how to make effective use

of multiple cores. While there are scenarios with abundant thread-level

parallelism (e.g., web servers) or multiprogramming loads, other scenarios

might make it difficult keep the cores busy, even after careful parallelization

of applications. One possible approach might be to use the cores to enhance

usability and provide additional functionalities like security, debuggability,

reliability, etc. Creative new ways to provide these functionalities timely

and efficiently are needed.

• Then there are the technological issues as well. The more the number of

cores on the die, the more the bandwidth requirement. However, because

of cost reasons, only a fixed number of pins (and hence bandwidth) can be

supported for a given process technology. Current processors are already

bandwidth-limited [67]. Breakthroughs would be required to enhance the

bandwidth of processors. Novel techniques would also be required in software

and hardware for effective utilization of bandwidth.

• Worst-case power of processors is another issue that multi-cores would have

to face. The number of cores for a given core type will be limited less by

the area budget, and more by the power budget. Effective worst-case power

reduction techniques would be needed to be able to put an increasing number

of cores on the die.

• Communication between cores will also have increasing overhead as the num-

ber of cores increase. In certain scenarios, they might even start dominat-

ing overall overheads. New interconnection architectures, mechanisms, and

technologies would be required to manage the interconnection overhead.

182

Similarly, multi-core aware coherence policies are also needed in order to

effectively make use of the underlying interconnection.

Subsequent chapters of this thesis address several of the above men-

tioned issues and advocate holistic design of multi-cores to push the yellow and

the red walls further.

Bibliography

[1] http://www.amd.com/us-en/processors/productinformation/
0 30 118 12651 00.html.

[2] http://www.amd.com/us-en/processors/productinformation/
0 30 118 8825 00.html.

[3] http://www.amd.com/us-en/processors/productinformation/
0 30 118 9484 00.html.

[4] http://www.arm.com/products/cpus/arm11mpcoremultiprocessor.html.

[5] http://www.broadcom.com/products/enterprise-small-
office/communications-processors.

[6] http://www.cavium.com/octeon mips64.html.

[7] http://www.geek.com/procspec/hp/pa8800.htm.

[8] http://www.intel.com/pressroom/kits/quickreffam.htm.

[9] http://www.intel.com/products/processor/coreduo/.

[10] http://www.intel.com/products/processor/pentium d/index.htm.

[11] http://www.intel.com/products/processor/pentiumxe/index.htm.

[12] http://www.intel.com/products/processor/xeon/index.htm.

[13] http://www.razamicroelectronics.com/products/xlr.htm.

[14] http://www.xbox.com/en-us/hardware/xbox360/powerplay.htm.

[15] International Technology Roadmap for Semiconductors 2003,
http://public.itrs.net.

[16] Butterfly parallel processor overview. In BBN Report No 6148,, March
1986.

183

184

[17] Alpha 21064 and Alpha 21064A: Hardware Reference Manual. Digital
Equipment Corporation, 1992.

[18] Alpha 21164 Microprocessor:Hardware Reference Manual. Digital Equip-
ment Corporation, 1998.

[19] Alpha 21264/EV6 Microprocessor:Hardware Reference Manual. Compaq
Corporation, 1998.

[20] Measuring processor performance with SPEC2000- a white paper, Intel Cor-
poration. 2002.

[21] A. Agarwal, J. Kubiatowicz, D. Kranz, B-H. Lim, D. Yeung, G. D’Souza,
and M. Parkin. Sparcle: An evolutionary processor design for large-scale
multiprocessors. IEEE Micro, June 1993.

[22] D. H. Albonesi. Selective cache-ways: On demand cache resource allocation.
In International Symposium on Microarchitecture, November 1999.

[23] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating Amdahl’s
Law Through EPI Throttling. In Proceedings of International Symposium
on Computer Architecture, 2005.

[24] James Archibald and Jean-Loup Baer. Cache coherence protocols: evalua-
tion using a multiprocessor simulation model. ACM Trans. Comput. Syst.,
4(4):273–298, 1986.

[25] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The
impact of performance asymmetry in emerging multicore architectures. In
Proceedings of International Symposium on Computer Architecture, 2005.

[26] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A scalable ar-
chitecture based on single-chip multiprocessing. In Proceedings of the 27th
Annual International Symposium on Computer Architecture, 2000.

[27] O. Beaumont, A. Legrand, and Y. Robert. The master-slave paradigm
with heterogeneous processors. In Proceedings of the IEEE International
Conference on Cluster Computing (Cluster’01), October 2001.

[28] William Bowhill. A 300-MHz 64-b quad-issue CMOS microprocessor. In
ISSCC Digest of Technical Papers, February 1995.

[29] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In 27th Annual In-
ternational Symposium on Computer Architecture, June 2000.

185

[30] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimizations. In Interna-
tional Symposium on Computer Architecture, June 2000.

[31] James Burns and Jean-Luc Gaudiot. Area and system clock effects on
smt/cmp processors. In Proceedings of the 2001 International Conference on
Parallel Architectures and Compilation Techniques, page 211. IEEE Com-
puter Society, 2001.

[32] James Burns and Jean-Luc Gaudiot. SMT layout overhead and scalability.
IEEE Transactions on Parallel and Distributed Systems, 13(2), February
2002.

[33] Joachim Clabes, Joshua Friedrich, Mark Sweet, Jack DiLullo, Sam Chu,
Donald Plass, James Dawson, Paul Muench, Larry Powell, Michael Floyd,
Balaram Sinharoy, Mike Lee, Michael Goulet, James Wagoner, Nicole
Schwartz, Steve Runyon, Gary Gorman, Phillip Restle, Ronald Kalla,
Joseph McGill, and Steve Dodson. Design and implementation of the
power5 microprocessor. In ISSCC, 2004.

[34] Jamison Collins and Dean Tullsen. Clustered multithreaded architectures
– pursuing both IPC and cycle time. In Proceedings of IPDPS, April 2004.

[35] J.D. Collins, H. Wang, D.M. Tullsen, C.J. Hughes, Y.-F. Lee, D. Lav-
ery, and J.P. Shen. Speculative precomputation: Long-range prefetching of
delinquent loads. In 28th Annual International Symposium on Computer
Architecture, July 2001.

[36] William J. Dally and Brian Towles. Route packets, not wires: On-chip
interconnection networks. In DAC-38, pages 684–689, 2001.

[37] John D. Davis, James Laudon, and Kunle Olukotun. Maximizing cmp
throughput with mediocre cores. In PACT ’05: Proceedings of the 14th
International Conference on Parallel Architectures and Compilation Tech-
niques, pages 51–62, Washington, DC, USA, 2005. IEEE Computer Society.

[38] R. H. Denard. Design of ion-implanted MOSFETs with very small physical
dimensions. In IEEE Journal of Solid-state Circuits, volume 98, 1974.

[39] Keith Diefendorff. Compaq chooses SMT for Alpha. In Microprocessor
Report, Vol 13, No. 16, December 1999.

[40] Daniel W Dobberpuhl. A 200-MHz 64-b dual-issue CMOS Microprocessor.
In IEEE Journal of Solid-State Circuits, Vol 27, No. 11, November 1992.

[41] R. Dolbeau and A. Seznec. CASH: Revisiting hardware sharing in single-
chip parallel processor. IRISA Report 1491, November 2002.

186

[42] M. Dubois, C. Scheurich, and F.A. Briggs. Synchronization, coherence, and
event ordering in multiprocessors. IEEE Computer, 21(2), 1988.

[43] Richard J. Eickemeyer, Ross E. Johnson, Steven R. Kunkel, Mark S. Squil-
lante, and Shiafun Liu. Evaluation of multithreaded uniprocessors for com-
mercial application environments. In ISCA-23, 1996.

[44] Joel Emer. EV8:The Post-ultimate Alpha. In PACT Keynote Address,
September 2001.

[45] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Her-
nandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec. Tarantula: A
vector extension to the alpha architecture. In International Symposium on
Computer Architecture, May 2002.

[46] D. Folegnani and A. Gonzalez. Reducing power consumption of the issue
logic. In Workshop on Complexity-Effective Design, June 2000.

[47] S. J. Frank. Tightly coupled multiprocessor systems speed memory access
times. In Electron, January 1984.

[48] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh. Cedar - a large scale mul-
tiprocessor. In ICPP, August 1983.

[49] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation in workloads
with externally specified rates to reduce power consumption. In Workshop
on Complexity Effective Design., June 2000.

[50] Soraya Ghiasi and Dirk Grunwald. Aide de camp: Asymmetric dual core
design for power and energy reduction. In University of Colorado Technical
Report CU-CS-964-03, 2003.

[51] Soraya Ghiasi, Tom Keller, and Freeman Rawson. Scheduling for heteroge-
neous processors in server systems. In Proceedings of Computing Frontiers,
2005.

[52] B Gieseke. A 600-MHz Superscalar RISC Microprocessor with Out-of-Order
Execution. In ISSCC Digest of Technical Papers, February 1997.

[53] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-
processors. In IEEE International Symposium on Low Power Electronics
1995, October 1995.

[54] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for dynamic
speed-setting of a low-power cpu. In International Conference on Mobile
Computing and Networking, November 1995.

187

[55] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of both
latency and throughput. In Proceedings of IEEE International Conference
on Computer Design, 2004.

[56] Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew Pleskun. Con-
fidence estimation for speculation control. In 25th Annual International
Symposium on Computer Architecture, June 1998.

[57] Stephen H. Gunther, Frank Binns, Douglas Carmean, and Jonathan C. Hall.
Managing the Impact of Increasing Microprocessor Power Consumption. In
Intel Technology Journal, 1st Quarter 2001.

[58] S. Gupta, S.W. Keckler, and D.C. Burger. Technology independent area
and delay estimates for microprocessor building blocks. In University of
Texas at Austin Technical Report TR-00-05, 1998.

[59] Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. A single-chip
multiprocessor. IEEE Computer, 30(9), 1997.

[60] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation sup-
port for a chip multiprocessor. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS VIII), October 1998.

[61] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and
D. Lindqvist. Network on chip: An architecture for billion transistor era.
In IEEE NorChip Conference, November 2000.

[62] J. Hennessy and D. Patterson. Computer Architecture a Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., 2002.

[63] J. L. Hennessy and N. P. Jouppi. Computer technology and architecture:
An evolving interaction. Computer, 24(9):18–29, September 1991.

[64] R. Ho, K.W. Mai, and M.A Horowitz. The future of wires. Proceedings of
the IEEE, 89(4):490–504, 2001.

[65] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein.
Scaling, power, and the future of cmos. In IEEE International Electron
Devices Meeting, December 2005.

[66] M. Horowitz, R. Ho, and K. Mai. The future of wires. 1999.

[67] Jaehyuk Huh, Stephen W. Keckler, and Doug Burger. Exploring the design
space of future CMPs. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2001.

188

[68] IBM. Power4:http://www.research.ibm.com/power4.

[69] IBM. Power5: Presentation at microprocessor forum. 2003.

[70] Intel Corp. Intel Pentium 4 Processor in the 423-pin Package Thermal
Design Guidelines, November 2000.

[71] A. Iyer and D. Marculescu. Power aware microarchitecture resource scaling.
In IEEE Design, Automation and Test in Europe Conference, 2001.

[72] A. Iyer and D. Marculescu. Power-performance exaluation of globally-
asynchronous, locally-synchronous processors. In International Symposium
on Computer Architecture, 2001.

[73] Russ Joseph and Margaret Martonosi. Run-time Power Estimation in High-
Performance Microprocessors. In The International Symposium on Low-
Power Estimation and Design, August 2001.

[74] C. Kaanta, W. Cote, J. Cronin, K. Holland, P.I. Lee, and T. Wright. Sub-
micron wiring technology with tungsten and planarization. In Fifth VLSI
Multilevel Interconnection Conference, 1988.

[75] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. In IBM Journal of
Research and Development, September 2005.

[76] Faraydon Karim, Anh Nguyen, Sujit Dey, and Ramesh Rao. On-chip com-
munication architecture for oc-768 network processors. In Proceedings of
the 2001 Design and Automation Conference, 2001.

[77] R.E. Kessler, E.J. McLellan, and D.A. Webb. The alpha 21264 micro-
processor architecture. In International Conference on Computer Design,
December 1998.

[78] C. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache struc-
ture for wire-delay dominated on-chip caches. In ASPLOS, 2002.

[79] Arthur Klauser. Trends in high-performance microprocessor design. In
Telematik-2001, 2001.

[80] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Nia-
gara: A 32-way multithreaded sparc processor. In IEEE MICRO Magazine,
March 2005.

[81] Ramakrishna Kotla, Anirudh Devgan, Soraya Ghiasi, Tom Keller, and Free-
man Rawson. Characterizing the impact of different memory-intensity lev-
els. In Proceedings of IEEE 7th Annual Workshop on Workload Character-
ization (WWC-7), 2004.

189

[82] John Kowaleski. Implementation of an Alpha Microprocessor in SOI. In
ISSCC Digest of Tecnical Papers, February 2003.

[83] V. Krishnan and J. Torrellas. A clustered approach to multithreaded pro-
cessors. In Proceedings of the International Parallel Processing Symposium,
pages 627–634, March 1998.

[84] Ashok Kumar. The HP PA-8000 RISC CPU. In Hot Chips VIII, August
1996.

[85] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-
ganathan, and Dean M. Tullsen. A multi-core approach to address-
ing the energy-complexity problem in microprocessors. In Workshop on
Complexity-Effective Design, June 2003.

[86] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-
ganathan, and Dean M. Tullsen. Processor power reduction via single-ISA
heterogeneous multi-core architectures. In Computer Architecture Letters,
Vol 2, April 2003.

[87] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ran-
ganathan, and Dean M. Tullsen. Single-ISA Heterogeneous Multi-core Ar-
chitectures: The Potential for Processor Power Reduction. In MICRO-36,
December 2003.

[88] Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen. Conjoined-core
chip multiprocessing. In International Symposium on Microarchitecture,
December 2004.

[89] Rakesh Kumar, Dean M. Tullsen, and Norman Jouppi. Core architecture
optimization for heterogeneous chip multiprocessors. In Proceedings of In-
ternational Symposium on Parallel Architectures and Computing Technolo-
gies (PACT), 2006.

[90] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P.
Jouppi, and Keith I. Farkas. Single-ISA Heterogeneous Multi-core Archi-
tectures for Multithreaded Workload Performance. In International Sym-
posium on Computer Architecture, June 2004.

[91] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in
multi-core architectures: Understanding mechanisms, overheads and scal-
ing. In Proceedings of International Symposium on Computer Architecture,
2005.

190

[92] S.R. Kunkel, R.J. Eickemeyer, M.H. Lipasti, T.J. Mullins, B.O. Krafka,
H. Rosenberg, S.P. VanderWiel, P.L. Vitale, and L.D. Whitley. A per-
formance methodology for commercial servers. In IBM Journal of R&D,
November 2000.

[93] Jim Laudon. Performance/watt the new server focus. In Proceeed-
ings of First Workshop on Design, Architecture, and Simulation of Chip-
Multiprocessors (dasCMP), November 2005.

[94] D. Lenoski, J. Laudon, K. Gharachorloo, W.D. Weber, A. Gupta,
J. Henessy, M. Horowitz, and M.S. Lam. The stanford DASH multipro-
cessor. In IEEE Computer, 1992.

[95] J. Li and J.F. Martinez. Power-performance implications of thread-level
parallelism in chip multiprocessors. In Proceedings of International Sympo-
sium on Performance Analysis of Systems and Software, 2005.

[96] T. Lovett and S. Thakkar. The symmetry multiprocessor system. In ICPP,
August 1988.

[97] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation
control for energy reduction. In International Symposium on Computer
Architecture, June 1998.

[98] Pedro Marcuello and Antonio Gonzalez. Clustered speculative multi-
threaded processors. In International Conference on Supercomputing, 1999.

[99] R. Maro, Y. Bai, and R.I. Bahar. Dynamically reconfiguring processor
resources to reduce power consumption in high-performance processors. In
Workshop on Power-aware Computer Systems, November 2000.

[100] Rick Merritt. Designers cut fresh paths to parallelism. In EE Times.,
October 1999.

[101] Gordon Moore. Cramming more components onto integrated circuits. vol-
ume 38, 1965.

[102] Tomer Morad, Uri Weiser, and Avinoam Kolodny. ACCMP - assymetric
cluster chip-multiprocessing. In CCIT Technical Report 488, 2004.

[103] Tomer Y. Morad, Uri C. Weiser, Avinoam Kolodny, Mateo Valero, and Ed-
uard Ayguade. Performance, power efficiency and scalability of asymmetric
cluster chip multiprocessors. In Computer Architecture Letters, Vol 4, July
2005.

191

[104] J. M. Mulder, N. T. Quach, and M. J. Flynn. An area model for on-chip
memories and its applications. In IEEE Journal of Solid State Circuits, Vol
26, No. 2, February 1991.

[105] Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous
processors. In Euro-Par, Vol. II, pages 573–577, 1996.

[106] M. Papamarcos and J. Patel. A low overhead coherence solution for multi-
processors with private cache memories. In ISCA-15, 1988.

[107] Li-Shiuan Peh. Flow control and microarchitectural mechanisms for ex-
tending the performance of interconnection networks. PhD Thesis, Stanford
University, 2001.

[108] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of
dynamic voltage scaling algorithms. In International Symposium on Low
Power Electronics and Design, August 1998.

[109] G.F Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder,
K. P. McAuliffe, E. A. Melton, V. A. Norton, , and J. Weiss. The IBM Re-
search Parallel Processor prototype (RP3): Introduction and Architecture.
In ICPP, August 1985.

[110] Jan M. Rabaey. The quest for ultra-low energy computation opportunities
for architectures exploiting low-current devices. April 2000.

[111] Elaine Rich and Kevin Knight. Artificial Intelligence, 2nd Edition. Morgan
Kaufmann, 1991.

[112] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu,
Changkyu Kim, Jaehyuk Huh, Doug Burger, Stephen W. Keckler,
and Charles R. Moore. Exploiting ILP, TLP, and DLP with the Poly-
morphous TRIPS Architecture. In International Symposium on Computer
Architecture, June 2003.

[113] Charles L. Seitz. The cosmic cube. In Communications of ACM, 1985.

[114] G Semeraro, G Maklis, R Balasubramonian, D H Albonesi, S Dwarkadas,
and M L Scott. Energy efficient processor design using multiple clock do-
mains with dynamic voltage and frequency scaling. In International Sym-
posium on High-Performance Computer Architecture, February 2002.

[115] T. Sherwood and B. Calder. Time varying behavior of programs. In UC
San Diego Technical Report UCSD-CS-99-630, August 1999.

192

[116] T. Sherwood, E. Perelman, G. Hammerley, and B. Calder. Automatically
characterizing large-scale program behavior. In International Conference on
Architectural Support for Programming Languages and Operating Systems,
October 2002.

[117] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Au-
tomatically characterizing large scale program behavior. In Tenth Inter-
national Comference on Architectural Support for Programming Languages
and Operating Systems(ASPLOS 2002), October 2002.

[118] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and
Brad Calder. Discovering and exploiting program phases. In IEEE Mi-
cro: Micro’s Top Picks from Computer Architecture Conferences, December
2003.

[119] Premkishore Shivakumar and Norm Jouppi. CACTI 3.0: An integrated
cache timing, power and area model. In Technical Report 2001/2, Compaq
Computer Corporation, August 2001.

[120] A. Snavely and D.M. Tullsen. Symbiotic jobscheduling for a simultane-
ous multithreading architecture. In Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems,
November 2000.

[121] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In 25 Years ISCA: Retrospectives and Reprints, pages 521–532,
1998.

[122] Gurinder S. Sohi and Amir Roth. Speculative multithreaded processors.
volume 34, pages 66–33, 2001.

[123] Sun. UltrasparcIV: http://siliconvalley.internet.com/news/
print.php/3090801.

[124] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin.
Wavescalar. In MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 291, Washington, DC,
USA, 2003. IEEE Computer Society.

[125] T. N. Theis. The future of interconnection technology. In IBM Journal of
R&D, May 2000.

[126] Marc Tremblay. Majc-5200: A vliw convergent mpsoc. In Microprocessor
Forum, October 1999.

193

[127] D.M. Tullsen. Simulation and modeling of a simultaneous multithreading
processor. In 22nd Annual Computer Measurement Group Conference, De-
cember 1996.

[128] D.M. Tullsen and J.A. Brown. Handling long-latency loads in a simulta-
neous multithreading processor. In 34th International Symposium on Mi-
croarchitecture, December 2001.

[129] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In 22nd Annual International Symposium
on Computer Architecture, June 1995.

[130] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar,
Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev
Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring
it all to software: Raw machines. Computer, 30(9):86–93, 1997.

[131] D.W. Wall. Limits of instruction-level parallelism. In Proceedings of the
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), pages 176–188, April
1991.

[132] J.D. Warnock, J.M. Keaty, J. Petrovick, J.G. Clabes, C.J. Kircher, B.L.
Krauter, P.J. Restle, B.A. Zoric, and C.J. Anderson. The circuit and phys-
ical design of the Power4 microprocessor. In IBM Journal of R&D, January
2002.

[133] A. Wilson. Hierarchical cache/bus architecture for shared memory multi-
processors. In ISCA-14, June 1987.

[134] C. Zilles and G. Sohi. Execution-based prediction using speculative slices.
In 28th Annual International Symposium on Computer Architecture, July
2001.

[135] Victor Zyuban. Unified architecture level energy-efficiency metric. In 2002
Great Lakes Symposium on VLSI, April 2002.

