Proximity-Aware Directory-based Coherence for
Multi-core Processor Architectures

Jeffery A. Brown
Department of Computer
Science and Engineering

University of California,
San Diego
La Jolla, CA 92093-0404

ABSTRACT

As the number of cores increases on chip multiprocessors, co-
herence is fast becoming a central issue for multi-core perfor-
mance. This is exacerbated by the fact that interconnection
speeds are not scaling well with technology. This paper de-
scribes mechanisms to accelerate coherence for a multi-core
architecture that has multiple private L2 caches and a scal-
able point-to-point interconnect between cores. These tech-
niques exploit the differences in geometry between chip mul-
tiprocessors and traditional multiprocessor architectures.

Directory-based protocols have been proposed as a scal-
able alternative to snoop-based protocols. In this paper,
we discuss implementations of coherence for CMPs and pro-
pose and evaluate a novel directory-based coherence scheme
to improve the performance of parallel programs on such
processors. Proximity-aware coherence accelerates read and
write misses by initiating cache-to-cache transfers from the
spatially closest sharer. This has the dual benefit of elim-
inating unnecessary accesses to off-chip memory, and min-
imizing the distance over which communicated data moves
across the network. The proposed schemes result in speedups
up to 74.9% for our workloads.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiprocessors; C.4
[Performance of Systems]: Performance attributes
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1. INTRODUCTION

Multi-core architectures (also called chip multiprocessors,
or CMPs) are becoming increasingly popular as a means
to enhance the throughput and power efficiency of proces-
sors. The initial implementations of multi-core technology
from the high-performance general purpose processor indus-
try have had a modest number of cores (two to four) [13, 2,
12, 23]; however, the industry is clearly headed to larger
and larger numbers of cores on each processor. In fact, Sun
already has offerings with eight cores on a die [14].

As the number of cores on a processor die grows, and as
more and more shared memory programs are run on these
processors, cache coherence is fast becoming a central issue
for multi-core performance. Cache coherence is the mecha-
nism that allows us to maintain the value of a given mem-
ory block in multiple processor caches at one time, and still
maintain system-wide agreement about the value of that
memory block at any point in program execution. Cache co-
herence requires that we maintain enough information about
the possible locations of the data across various caches so
that we can find the data when a new consumer requests
a copy, and so that we can communicate the obsolescence
of cached values when someone writes to a memory block
which is being shared. Since cache coherence involves signif-
icant amount of communication over wires, wire speed and
bandwidth are the primary limiters to the performance and
scalability of cache coherence. As interconnection speeds
fail to scale well with processor speeds [10] and as intercon-
nection bandwidth overhead (in terms of area and power)
worsens over time [15], novel mechanisms and policies are
needed for accelerating coherence for a given wire speed and
bandwidth.

This paper examines the design of effective coherence mech-
anisms for a multi-core architecture that has multiple L2
caches, a directory-based cache coherence protocol, and a
scalable point-to-point interconnect. Multi-core implemen-
tations with small numbers of cores can use a snoop-based
cache coherence protocol, which relies on a broadcast-based
interconnect — typically a bus — to implicitly provide global
communication of value and state changes, and to provide
a single ordering of all accesses. However, broadcast-based
interconnects such as buses scale poorly as the number of
cores grows, and we will be forced to move to scalable in-
terconnects and directory-based coherence solutions (which
work without the need for any broadcast medium). In this
paper, we begin the process of exploring directory proto-



cols for multi-core processors, and tuning the protocols for
the unique needs and opportunities provided by chip multi-
processors. We propose and evaluate novel directory-based
coherence schemes that improve the performance of parallel
programs on such processors.

We show in this paper that simply implementing tradi-
tional directory protocols within a chip does not provide the
most effective solution. This is because those protocols were
designed to work under very different topological assump-
tions than those on a chip multiprocessor. Some examples
of those assumptions, true on a multiple-chip multiprocessor
but not on a single-chip multiprocessor, are that, for a given
requester and home node:

1. The home node’s main memory and the home node’s
directory are close to each other, and about the same
distance (latency) from the requesting node;

2. Once a request has reached the home node directory,
the home node memory is closer than the caches of
other nodes; On a traditional multiprocessor, the biggest
latency barriers are between nodes. On a CMP, the la-
tencies between nodes are small, and the dominant la-
tency barrier is to off-chip memory, regardless of which
node it is associated with.

3. The relative distance between nodes varies little.

On a traditional multiprocessor, the distances (in latency)
from a given node to the nearest node and to the farthest
node are often within a factor of two of each other, because
the latency is dominated in most cases by the off-chip and
off-board latencies. On a chip multiprocessor, although all
latencies are smaller in absolute terms, the relative laten-
cies vary significantly. That is, a core six hops away takes
significantly longer to access than one a single hop away.

This paper proposes proximity-aware directory-based co-
herence. Proximity-aware coherence is based on the obser-
vation that, while a cache line can reside in multiple caches
in the shared state, there is no guarantee that the line will be
present in the cache of the home node corresponding to that
line. Thus, instead of making the home node always source
the data, from very slow off-chip memory if it happens to not
exist in the home node’s caches, proximity-aware coherence
enables the closest sharer to source the data on a read or
write request. This results in decreased latency and band-
width utilization, especially when the line is not present in
the home node’s cache but is present in the “shared” state
in some other cache. Even when the line is present in the
home node’s cache, proximity-aware coherence can still help
in reducing the bandwidth pressure on the interconnect.

Our evaluations for a 16-core chip multiprocessor with
MESI coherence show that proximity-aware coherence re-
sults in up to 74.9% improvement in performance. Average
performance improvement was 16% for our workloads.

The rest of the paper is organized as follows. Section 2
discusses prior related work. Section 3 describes the baseline
architecture and the the baseline directory-based coherence
protocol. Section 4 describes the novel coherence imple-
mentations. Methodology for our evaluations is presented
in Section 5. Our evaluations and results are described in
Section 6. Section 7 concludes.

2. RELATED WORK

Directory-based protocols [18, 17] have been proposed for
scalable coherence on distributed shared memory multipro-
cessors. The coherence protocol for SGI Origin [17] was
a four-state “MESI” (Modified, Exclusive, Shared, Invalid)
protocol assuming sequential memory consistency. Direc-
tory coherence for the DASH multiprocessor [18], on the
other hand, utilized a three-state protocol assuming weak
memory consistency. Both these machines featured dis-
tributed shared memory (DSM) and implemented cache co-
herence with distributed directories that were stored at each
node, but off-chip from the processor itself.

While directory-based coherence has been popular for DSMs,

it has not been studied in much detail for CMPs utilizing
private L2 caches. Most of the current CMP implementa-
tions and proposals either have shared L2 caches with di-
rectories [3] or private L2 caches with snoop-based coher-
ence [16]; neither of those approaches scale well as the num-
ber of cores increases. Huh, et al. [11] discuss a CMP model
with directory-based coherence for their study of optimal de-
gree of sharing for NUCA caches. They assume a central di-
rectory with constant access time. Zhang and Asanovic [24]
also consider directory-based coherence for one of their CMP
models; they assume directory caches distributed by cache
set indices.

Our implementations of directory-based coherence assume
a distributed directory, with an on-chip directory controller
and directory cache at each node. Caching the directory
state was proposed [8, 21] as a means of reducing the mem-
ory overhead entailed by directories. Michael and Nanda [20]
propose integrating directory caches inside the coherence
controllers to minimize directory access time. Acacio, et
al. [1] study the impact of having first level directory on-
chip caches.

One of our proposed policies, proximity-aware coherence,
relies on location awareness to source shared data. CC-
NUMA and COMA architectures [5, 25] also use spatial
awareness for minimizing latencies. However, those archi-
tectures improve performance by retaining local copies of
data that would otherwise require remote access. Proximity-
aware coherence, on the other hand, does not require chang-
ing the mapping of data to sharers.

While we assume a conventional interconnect, Eisley and
Peh [7] move much of the coherence-related control and data
storage into the network. Traditional sharer sets are re-
placed by wvirtual trees maintained within the routers them-
selves, with routers serving as active participants in coher-
ence decisions. Through different mechanisms, their work
and ours realize similar latency benefits on parallel work-
loads.

Chang and Sohi [4], seeking to combine the best attributes
of both shared and private L2 caches, introduce a scheme
for globally managing data placement, replication, and mi-
gration across the caches of all cores; even single-threaded
workloads benefit through the use of neighboring cache re-
sources. New policies manage storage through a centralized
directory-like structure suitable for coordinating small num-
bers of cores. While their cache-management scheme is or-
thogonal in concept to that of a coherence protocol, both it
and our own optimizations improve performance by avoiding
off-chip memory accesses.

Token Coherence [19] provides a framework for decoupling
policies for coherence performance and correctness, the for-



mer implemented as performance protocols, and the latter
ensured by correctness substrates. The specific performance
protocol considered in that work, TokenB, broadcasts re-
quests in order to avoid resorting to main memory accesses
unnecessarily. Our proximity-based coherence scheme seeks
the same goal, and could itself be expressed as a particular
performance protocol on top of a token-based system.

3. ACMPARCHITECTURE WITH
DIRECTORY-BASED COHERENCE

This section describes the processor architecture that we
use for our study. We also describe the baseline implemen-
tation of directory-based coherence for this architecture.

3.1 Architecture

The architecture is a chip multi-processor consisting of
16 cores arranged as a 4 x 4 mesh of tiles. Each tile con-
tains an in-order core with private Level-1 instruction and
data caches, a private unified Level-2 cache, a directory con-
troller, and a network switch connecting to the on-chip net-
work, as shown in Figure 1. Memory — both directory and
regular program memory — is accessed through on-chip mem-
ory controllers, with one located on each tile. Each memory
channel provides access to a different range of physical mem-
ory addresses. The architecture resembles a conventional
mesh-connected multi-chip multiprocessor. The optimiza-
tions considered in this paper exploit, among other things,
the non-uniform latencies between cores inherent in a mesh
architecture. This non-uniformity (in particular, the ratio of
the latency for communicating with a distant node to that
for communicating with an adjacent node) will only increase
with larger CMPs; as wire delays increase, the absolute dif-
ference between these latencies will increase as well. Note
that our baseline is only a canonical architecture — the tech-
niques outlined in this paper can apply to any system with
multiple (L2) caches, whether those caches each serve a sin-
gle core, or each serve a cluster of cores.

We contrast this architecture with that of a more tradi-
tional multiprocessor (Figure 2), which is composed of mul-
tiple chips and typically multiple boards. A coherence pro-
tocol that is designed for the traditional multiprocessor will
not exploit the geometries of a chip multiprocessor well; it
assumes that, for a given memory address, node memory is
close to the home node directory, and that remote caches
are far away. Neither assumption is true on a chip multi-
processor.

We assume that the L2 cache is tightly coupled to the rest
of the tile. The tag and status storage are kept separate from
the data arrays and close to the core and router for quick
tag resolution.

Accesses to resources on other tiles require that traffic
travel through the network switch and over the on-chip net-
work, experiencing varying access latencies depending on
the distance between the tiles and the loads on the links
between them.

We also assume directory caches (DC), one per node, which
cache directory state as it is used by the directory con-
trollers. Instead of accessing the off-chip directory mem-
ory for each coherence operation, the directory controller
accesses the DC instead. All state changes are made to the
contents of the DC itself. Only when there is a miss in the
DC does the directory controller need to make an off-chip
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Figure 1: The baseline chip multiprocessor architec-
ture, with 16 tiles. Each tile contains a core (with
L1 caches), an L2 cache, a directory controller, a
directory cache, a network switch, and a memory
channel.

access to determine the coherence state of a line; given that
only a single node is designated as the point of contact for
directory information for any given cache line (its “home
node”), the corresponding coherence state cannot exist in
another node’s DC, so the directory caches themselves need
not be coherent.

The directory cache is organized as a set-associative cache
where each cache line holds state corresponding to multiple
contiguous memory blocks to exploit spatial locality. A new
entry is created in the DC for every line that is loaded. The
directory cache replacement policy is LRU.

Note that the above organization decouples L2 tags from
the coherence directory tags. This enables low-latency ac-
cess to the coherence state of a line, even when the line is
not present in the L2 of the home node.

A generic four-state “MESI” protocol [17] adapted for
CMPs is used as the baseline protocol for on-chip data co-
herence. The MESI protocol is named for the four states
available to a line in a particular cache:

M (modified — this cache has a modified version of the
data, and no other cache has a copy), E (exclusive — this
cache has a clean copy, but no other cache has a copy), S
(shared — this cache has a clean copy, but other caches may
also have a copy), and I (invalid). In a directory protocol,
the home node must keep track of the global state of each
line, as well as the set of sharers of each line, in order to
coordinate writes to shared data.

Our proposed implementation is a variant of this proto-
col. We now describe the details of our baseline coherence
protocol.

3.2 Basdine Coherence Protocol

To illustrate the directory coherence protocol, first con-
sider how an L1 read miss traverses the memory hierarchy:

e Requester - If the requested location is present in
the requester’s L2 cache, the cache simply supplies the
data and no state change is required at the directory
level. If there is an L2 miss, a request is sent to the
home node which is associated with the desired mem-
ory address.
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Figure 2: A more traditional multiprocessor (multi-
chip, multi-board).

e Home node - The directory controller accesses the
node’s directory cache, and directory memory if nec-
essary, to examine the coherence state for the desired
cache line. If the home node itself is indicated as a
sharer of the desired data, the directory controller for-
wards the request to the local L2 cache for service.
Otherwise, if the coherence state indicates the block is
shared (and hence unmodified), a read from the main
memory attached to the home node is initiated, and
the result subsequently sent to the requester. If the co-
herence state instead indicates that the block is dirty,
hence held exclusively by one node, the request is for-
warded to that remote node’s L2 cache for service.

e Remote node - The node with the dirty copy replies
with the most up-to-date version of the data, which is
sent directly to the requester. In addition, a sharing
write-back message is sent to the home node to update
main memory, and to change the directory state to
indicate that the requester and remote nodes now have
shared copies of the data.

Next, consider the sequence of operations that occurs when
a location is written. We focus here on the case of a write
miss.

e Requester - A read-exclusive request is sent to the
home node to retrieve the cache line and gain owner-
ship.

e Home node - The home node can immediately sat-
isfy an ownership request (from its L2 or memory) for
a location that is in the uncached state. If a block
is in the shared state, then all cached copies must
be invalidated. The line in the directory cache cor-
responding to the request address indicates the nodes
that have the block cached. Invalidation requests are
sent to these nodes. For weakly consistent processors,
the home node would concurrently send an exclusive
data reply to the requesting node (though data need
not be sent for upgrade misses), and then wait for in-
validate ACKs from the other potential sharers. For
strongly consistent processors, the home waits until it
has received invalidate ACKs from all sharers before
replying to the requester and granting ownership of
the block. For both types of consistency, a request is

considered serviced at the home node only after in-
validate ACKs have been received from all previous
sharers. If, instead of the shared state, the directory
indicates that the desired block is initially dirty, then
the read-exclusive request must be forwarded to the
sole owner, as in the case of a read.

¢ Remote node - If the directory had initially indicated
that the memory block was shared, then the remote
nodes are each sent an invalidation request to elimi-
nate their copy. Upon receiving the invalidation, each
remote node invalidates the corresponding line, and
then replies to the home with an acknowledgment. If
the directory had instead indicated the block was ini-
tially dirty, then the sole owner is sent a read-exclusive
request. As in the case of the read, the remote node re-
sponds directly to the requesting node with the data,
and sends the home node a message acknowledging
transfer of ownership.

4. ACCELERATING COHERENCE VIA
PROXIMITY AWARENESS

Proximity-aware coherence encompasses the recognition of
two facts particular to chip multiprocessors. First, that an
on-chip cache access — even to a remote node — is always
closer than an off-chip memory access. Second, that if there
are multiple sharers of the data, selecting the right source to
provide the data (one who is close to the requester) can re-
duce both latency and bandwidth utilization. We present a
novel directory-based coherence schemes that exploits these
properties.

For conventional directory-based coherence, a read or write
miss to a line that is in the shared or the uncached state al-
ways results in the home node sourcing the data. However,
the data may not be in the home node’s L2, and accesses to
off-chip memory are expensive. Proximity-aware coherence
relies on the observation that even if data is not present in
the home node’s L2, it might still exist in shared state in
some other L2 on the chip. This relaxes the constraint of
the home node always sourcing the data in such scenarios
and instead allows other sharers to source the data.

To illustrate the proximity-aware coherence protocol, first
consider how a read miss traverses the memory hierarchy.
Initial actions at the requester remain the same as in the
baseline. The protocol differs at the home node and at the
remote node.

e Home node - The home node examines the directory
state of the memory location. If the block is dirty,
the request is forwarded to the exclusive owner, as in
the baseline. If the block is uncached, the home node
services the request from main memory, as in the base-
line. Otherwise, the block is clean; if the home node is
indicated as a sharer, the request is forwarded to the
home node’s L2 cache for service. If the home node is
not a sharer, but other nodes are, then the directory
controller selects one or more of the potential sharers
to ask for the data. The home node sends a message to
the closest of these sharers, requesting it forward the
data to the original requester. If the protocol supports
multiple sharer requests, others are contacted in turn,
until one if found to have the data or the maximum
number of requests has been made.
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Figure 3: Proximity-aware coherence

The directory state is not updated until the directory
controller either receives an ACK from a remote node
indicating that the desired data has been forwarded
to the original requester, or every proximity-based re-
quest has been NACKed, at which point the controller
gives up on future such requests and falls back to re-
questing the data from main memory.

¢ Remote node - If the remote node is in the dirty
state, the same actions take place as in the baseline.
However, if the data is shared and the remote node has
been asked to forward the data to the requester (be-
cause it is the closest sharer), the remote node sources
data directly to the requester and sends an ACK back
to the home node. If the requested line is not in the
remote node’s L2 cache when the request from the
home node reaches it, the remote node responds with
a NACK.

Now consider the sequence of operations that occurs when
there is a write miss. Again, initial actions remain identical
at the requester.

e Home node - If the requested line is in the home
node’s L2, the same actions take place as in case of
the baseline coherence implementation.

If the directory indicates that the block is dirty, then
the read-exclusive request must be forwarded to the
exclusive owner, as in the case of a read.

If the line is in shared state AND the line is not in the
home node’s L2, forward-exclusive requests are sent in
turn to one or more potential sharers, as in the read-
miss case, eventually falling back to reading from main
memory if the forwarding requests fail. Any poten-
tial sharers which were not sent a forward-exclusive
request are then sent invalidate requests, in parallel.
Directory state is not updated until replies are received
from all sharers.

¢ Remote node - If the directory had indicated a dirty
state, then the exclusive owner receives a read-exclusive
request. The coherence transactions in that case are
identical to the baseline coherence implementation.

If the directory had indicated that the memory block
was shared, and the remote node is the subject of a
forward-exclusive request, it forwards a copy of the
data (if present) to the original requester, invalidates
its own copy, and responds with an ACK to the home
node. If the remote node does not have the data, a
NACK is sent.

Proximity-aware coherence attempts to ensure that if data
is anywhere in the CMP in the appropriate state, a read or
write request can be satisfied without the need to do off-chip
memory access at the home node. This decreases the la-
tency of coherence. Also, proximity-aware coherence should
result in decreased overall bandwidth utilization since the
control messages are much smaller than data messages: even
though the number of control messages increases, the larger
data-carrying responses will travel shorter distances. The
latency /bandwidth tradeoffs depend on the spatial location
of the nodes and the relative size of the data messages versus
control messages.



The implementation of proximity-aware coherence is a
straightforward, safe extension of the mechanisms present
in the baseline system; no additional storage is required
specifically to support it, and the additional state transi-
tions within the directory and cache controllers don’t require
significant complexity to handle. Correctness of the under-
lying protocol is not affected, since 1) the proximity-aware
extensions are applied only to clean data (possibly after in-
validates), 2) the resulting cache blocks are left clean, and
3) the corresponding directory entry is always updated with
a superset of the actual sharers before processing the next
request for the subject memory block.

Note that proximity-aware coherence is not applicable for
upgrade misses, as no data blocks need to be transmitted in
that case. Proximity-aware coherence will work whether the
processor supports strong (e.g., sequential) or weak consis-
tency.

While proximity-aware coherence as introduced forwards
a single data request to the sharer nearest each requester,
a variety of request policies are possible. We explore two
additional considerations: how many sharers to send prox-
imity forwarding requests before giving up, and what metric
is used to order candidate sharers.

Forwarding requests to multiple potential sharers pits the
benefits of avoiding unnecessary off-chip memory accesses
when some of the advertised sharers lack copies of the data,
against the bandwidth and latency costs of the additional
control messages. (It is possible for nodes listed as sharers
at the directory to no longer contain copies of the data,
because it has been evicted from the cache). We consider
forwarding requests to the "nearest” one, two, or three nodes
before falling back to an external memory access.

We consider three node selection policies, which are used
to order the potential recipients of a proximity forwarding
request. The first, near, orders candidates by the Manhat-
tan distance from each remote node to the requester. The
second, via, orders candidates by the sum of the Manhat-
tan distances from the home node to each remote node, and
from each remote node to the requester. The final policy,
rand, simply chooses nodes from the sharer set at random.

In reporting results, we combine the node selection policy
and try-count, e.g., a policy which attempts to source data
from two remote nodes nearest to the requester is referred
to as near2. We refer to the policy of consulting a single
sharer at random before reverting to main memory simply
as rand.

5. METHODOLOGY

We perform all our evaluations using a modified version of
RSIM [22], a discrete event-driven multiprocessor simulator.
RSIM has detailed models of the core, the primary caches,
the L2 cache and the 2D mesh network. However, RSIM
models a distributed shared-memory multiprocessor. Ap-
propriate changes were made to simulate on-chip multipro-
cessing with on-chip networks. Significant changes were re-
quired to model the proposed directory-based coherence im-
plementations. Home nodes are assigned based on a “first-
touch” policy [17]. This policy ensures that the home node
is assigned to a node that is likely to be an active sharer of
the data.

We assume 70 nm technology (based on BPTM [6]) and
model a 3-cycle network hop — that includes the router la-
tency and an optimally-buffered 5 mm inter-tile copper wire

[ Component [[ Parameter [
Processor Model in-order
Issue-width dual-issue
Instruction window (entries) 16
Load/store queue (entries) 16
Branch predictor bimodal (2K)
Number of integer ALUs 2
Number of FP ALUs 1
Cache Line Size 64B
L1 I-Cache Size/Associativity 32KiB/4-way
L1 D-Cache Size/Associativity 32KiB/4-way
L1 Load-to-Use Latency 1 cycle
L1 Replacement Policy Pseudo-LRU

L2 Cache Size/Associativity

256KiB/8-way

L2 Load-to-Use Latency 6 cycles

L2 Replacement Policy Pseudo-LRU
Directory Cache Size/Associativity 16KiB/4-way
Directory Cache Load-to-Use Latency 1 cycle
Directory Cache Replacement Policy LRU
Network Configuration 4 % 4 mesh
One-hop latency 3 cycles
Worst-case L2 hit latency (contention-free) || 48 cycles
Number of Memory Channels 16 (1 per L2)
Directory Memory Latency 30 cycles
External Memory Latency 256 cycles

Table 1: Architecture Detail

on a high metal layer. The latencies are modeled by assum-
ing a 24 FO4 processor clock cycle [9]. Memory channels
are assumed to have RDRAM interfaces. Table 1 lists the
important system parameters used in the experiments.

The workloads we use to evaluate our coherence mecha-
nisms are listed in Table 2. These are all parallel work-
loads and represent a wide variety in their computation-
communication ratio. The applications also have varying
degrees of sharing and synchronization, and represent di-
verse application domains.

6. ANALYSISAND RESULTS

In this section, we present our evaluation of the proposed
prozimity-aware coherence policies. All our evaluations as-
sume a sequentially consistent processor with MESI baseline
protocol as described in Section 3.2. Evaluations are pre-
sented for 256 KB L2 caches unless otherwise noted.

Proximity-aware coherence seeks to eliminate accesses to
memory for any data held in an on-chip cache, and to mini-
mize the distance traveled for any cache-to-cache transfers.
The first goal, in particular, exploits the unique property
of chip multiprocessors (over traditional distributed shared
memory multiprocessors) that the latency of communication
between compute nodes (and hence the latency of seeking
data from a peer core’s cache) is significantly lower than the
latency of seeking data from one’s own local memory.

The effectiveness of this technique, then, will depend in
large part on how often a requested line does not reside in
the queried home node (which would typically result in a
memory access), yet does reside elsewhere on chip in an-
other cache. Figure 4 shows the fraction of read misses to a
shared line (i.e., the corresponding directory entry has the
line in shared state) that do not have the home node listed
as a sharer. The higher the bars, the higher the opportu-
nity for initiating proximity-aware cache-to-cache transfers.
These results include the effect of the first-touch home node
assignment policy, which increases the chance that the home
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Figure 4: Fraction of reads misses to shared lines for
which the home node is not a sharer, but another
node is. The higher the bars, the more potential
benefit from proximity-aware coherence. The seg-
ments of each bar indicate the minimum number of
hops from a sharer to the requester, for each miss.

node is an active sharer. In the absence of this policy, the po-
tential for proximity-aware coherence would be even greater.

Note also, in Figure 4, that the results for each benchmark
are broken down in terms of the distance from the requester
of the closest node that is listed in the directory as a sharer.
So, if the requester id is 0 (top left corner of the chip), and
the closest sharer for the requested line, as listed in the
directory, is node 15 (bottom right corner of the chip), it
adds to the stacked bar corresponding to 6 (because the two
nodes are six network hops away).

There are two things to note in this graph. First, we can
see that it is quite common for shared data to not be found
in the home node, but exist elsewhere on the chip. In fact,
this happened for nearly half of read misses to shared lines
(43%). The actual percentage does depend significantly on
the data access patterns, however, and therefore we observe
a significant variance by benchmark. For example, for un-
struct and ocean, the requester is often the home node as
well and thus only 14% and 22% of read misses to shared
lines, respectively, have the home node not listed as a sharer.
fft experiences a very small number of read misses to shared
lines, essentially all of which are shared at the home node.
Data migration patterns are more aggressive for appbt and
mp3d, resulting in a high fraction of read misses to shared
lines with non-home sharers (74% and 78%, respectively).

Another observation from the graph is that most of the
requests can be satisfied by nodes that are one hop away.
While this is not very surprising (as the average distance
between two nodes in a 16 X 16 tiled processor is only three
hops), it does mean that proximity-aware coherence, when

done right, can potentially result in significantly reduced
average L2 miss latency.

While Figure 4 shows the potential for proximity-aware
coherence, the numbers do represent an upper bound (albeit
likely a tight one), because there is no guarantee we will find
the closest sharer on the first try. Evictions in the individual
caches cause the sharer set in the directory to always be a
superset of the actual sharers. Thus, while this result gives
an accurate account of how often a sharer exists, there will
be times (depending on the eviction rate) when finding that
sharer is not easy.

An more direct measure of success for this technique co-
herence is the reduction in average 1.2 miss latency, when
proximity-aware coherence is applied. Figure 5 shows the
average latency of an L2 miss for a multi-core processor
enhanced with proximity-aware coherence. The results are
normalized against L2 miss latencies for the processor with
baseline coherence. As can be seen, proximity-aware co-
herence can often result in significant reduction in latency
of coherence operations. Latency reductions of up to 79%
(quicksort) were observed. Average latency reduction was
24.6%.

Proximity-aware coherence has two distinct enhancements
— elimination of unnecessary memory accesses, and the min-
imization of distance traveled by shared data. These results
indicate that the former is clearly the more important fac-
tor, in these experiments, for performance. This is reflected
in the fact that all three distance protocols achieve strong
gains, but the difference between them is slight.

However, it is still worth noting that via performs slightly
better than random and near. Random (rand) represents
a baseline distance-oblivious heuristic. Near minimizes the
distance from the sharer to the requester, but in many cases
the total hops traveled from the home node to the requester
(via the sharer) is greater than the minimal number of hops
from the home node to the requester. This is because the
control message must travel from the home node to the
sharer (which, although presumably close to the requester,
may be on the opposite side from the home node). So while
the distance traveled by the data is minimized, the total
distance is not. The via enhancement greatly increases the
likelihood that the combined distance traveled by the con-
trol message and the data is no greater than the minimal
distance. This results in reduced overall L2 miss latency.

An associated effect of performing a spatial optimization
(e.g., near and wia) is that is that the average bandwidth
pressure on the interconnect is reduced. This is because the
sourced data now traverses a shorter distance, on average,
from the sharer to the requester. Figure 6 shows the average
number of bytes of data transferred per L2 miss for the three
proximity-aware policies. We observe up to 6% reduction in
bandwidth requirements for via and near over random. In a
system where contention for some links was high, we would



expect that reduced bandwidth to translate more directly
into latency reductions (due to reduced queueing). However,
the SPLASH2 benchmarks put very little overall pressure on
our assumed interconnect.

In fact, there are several reasons why we believe these re-
sults understate the potential gains of the proximity-aware
coherence, and the spatial optimizations (e.g., via) espe-
cially. The SPLASH2 benchmarks have small working sets
relative to our caches. This has two effects — contention for
links is low (as mentioned), and the number of L2 misses
per instruction is generally quite small. This means that
the sensitivity of these results to the actual L2 miss latency
is much lower than most realistic parallel commercial work-
loads. Additionally, we will see even greater gains as the
number of cores (and the maximum and average distance
between cores) increases. With future many-core systems
(with tens or possibly hundred of cores), the importance of
proximity-aware coherence and the right policy to choose
will only increase.

In spite of the above limitations, the significant reduction
in average L2 miss latency through proximity-aware coher-
ence does translate into improved system performance. Fig-
ure 7 shows the performance of the three proximity-aware
policies normalized against the baseline coherence protocol.
As can be seen, proximity-aware coherence can result in
speedups up to 75% with an average speedup of 16%. The
via policy results in the highest system performance.

We also evaluate the impact of the near and wvia poli-
cies with try-counts of two and three, i.e., retrying one or
two additional potential sharers, after the failure of the first
proximity-read request, before falling back to the use of main
memory. The use of additional requests increases the success
rate of proximity-read sequences by a mean of 7% for near2
and via2, and 9% for near3d and via3. Unfortunately, these
gains are offset by increases in bandwidth utilization, as well
as some increases in the L2 miss-service latency (since retries
are handled serially). While lu benefits from retries with an
additional 1% decrease in mean L2 miss-service time and an
additional 0.2% increase in speedup, the suite-wide impact
of retries is negligible.
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Figure 5: Mean L2 miss-service latency with
proximity-aware coherence, normalized (base = 1.0).
The rand policy queries a random on-chip sharer,
nearl queries one sharer closest to the requester,
and vial queries one sharer with a minimum dis-
tance along the home-requester path.
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Figure 7: Speedup from using proximity-aware co-
herence for a sequentially consistent processor

7. SUMMARY AND CONCLUSIONS

This paper takes a first step in exploring the design of di-
rectory coherence protocols for chip multiprocessors. Future
multi-core designs will feature multiple L2 caches and scal-
able interconnects. However, this work shows that simply
implementing traditional directory protocols on a multi-core
architecture does not provide the best design.

In particular, we show that multi-core specific customiza-
tion of directory coherence (we call it prozimity-aware co-
herence) can result in speedups up to 75% over a traditional
directory coherence protocol applied directly to a multi-core
processor. Average speedup of 16% was observed. Reduc-
tion in average L2 miss latency (for coherence misses) was
even greater. Average miss latency reduction of up to 79%
(and a suite-wide average reduction of 25%) was observed.
More importantly, the results suggest that as multi-cores
scale (both in terms of number of cores on the dies as well
as the size of the dataset or working set of applications),
the potential for proximity-aware coherence is going to only
increase with time.

These results also demonstrate two other important points.
First, that as we seek to use the coming wave of chip mul-
tiprocessors more effectively with parallel programs, perfor-



mance will become increasingly sensitive to coherence. Sec-
ond, we find that it is beneficial to reconsider the design of
coherence mechanisms to account for the unique character-
istics of multi-core architectures.
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