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ABSTRACT
The growing complexity and variability of future computing systems is
making it increasingly likely that individual circuits will produce erro-
neous results, especially when operated in a low energy modes. Pre-
vious techniques for Algorithm - Based Fault Tolerance (ABFT) [7]
have been proposed for detecting errors in dense linear operations, but
have high overhead in the context of sparse problems. In this paper,
we propose a set of novel techniques that minimize the overhead of ap-
plying ABFT to sparse problems. The techniques are based on the in-
sight that we can utilize sampling techniques to approximate the checks
for sparse problems, as these problems are typically well-structured
and sampling produces a good approximation of the problem’s over-
all structure. Further, we propose algorithms for detecting errors in
problems that have weak structure by first conditioning the problem
to reduce the amount of variation within the problem, making it more
amenable to approximation. These techniques are shown to yield up to
2x in performance improvements.

1. INTRODUCTION
This paper focuses on algorithmic techniques for low overhead fault

detection for sparse linear algebra applications. Sparse linear algebra
forms the core of a large class of high performance computing (HPC)
applications such as linear solvers, differential equation solvers, and
graph analysis problems [2, 6]. It also forms the core of a large number
of emerging recognition, mining, and synthesis (RMS) applications [4].
Algorithmic approaches to fault detection eliminate the need for hard-
ware and software overhead associated with protecting against varia-
tion induced timing errors, and allow for both power and energy to be
reduced.

Some checksum-based approaches have been proposed previously
for dense linear algebra [7]. For dense matrices the traditional Algorithm-
Based Fault Tolerance (ABFT) [7] check is very efficient, requiring
O(n) time compared to O(n2) for the original multiplication. Un-
fortunately, these approaches cannot be used directly for sparse linear
algebra problems as sparse linear algebra problems have a lower al-
gorithmic time complexity than equivalent dense problems (O(n)). A
direct use of the previously proposed checksum-based approaches can
therefore result in high overheads for sparse linear algebra problems.
(Section 4)

In this paper, we propose new algorithm approaches for low over-
head checksum-based fault detection for sparse linear algebra based
applications. The fault detection techniques rely on the fact that sparse
applications typically have inherent structure within the data and com-
putation itself. These structures may be exploited to improve the perfor-
mance of traditional dense checks. Novel preconditioning techniques
(Section 2) may also be used to improve the structure. Indeed, to the
best of our knowledge, this paper is the first to address application-level
fault tolerance in the context of general sparse linear algebra.

2. ALGORITHMIC FAULT TOLERANCE
Our first improvement to the traditional algorithm approach takes

advantage of the fact that error checking does not always need to be ex-
act. As such, the Approximate Random (AR) technique approximates
the right-hand side of the check ( (1TA)x) by randomly sampling the
dimensions of the problem. The sampled result is then scaled, so that
the identity becomes 1T (Ax) = (cTA)x · n

s
, where s out of n entries

are sampled.
This check works best for matrices with fairly consistent column

sums, meaning that a sample of the columns is a good approximation
of the others. This is true of many real matrices. For example, Figure 1
shows the matrix qpband from the University of Florida Sparse Matrix
Collection [3]. This matrix represents a canonical indefinite optimiza-

tion problem and has a banded diagonal structure. The matrix structure
is shown on the left and on the right we show the distribution of the col-
umn sums. These sums are very consistent, with a low variance of 1.6,
meaning that a small number of samples will capture their distribution
fairly precisely. Similar opportunities exist for the matrix bcsstm37 in
Figure 3, which represents a track ball stiffness matrix [3].

The accuracy of approximate random depends on the variance of
the values in x, in addition to depending on the variance of the matrix
columns. In the context of computational science, x typically corre-
sponds to the state of a physical system. In that case it will have a fairly
regular structure since different regions of the physical space will have
similar states. However, in cases where the physical system is chaotic
or x comes from a non-physical system, the technique will need to take
the variance of x into account as the variance rises.

2.1 Approximate Clustering
When a matrix is too complex for AR to provide a good approxi-

mation, it is possible to improve accuracy by dividing the columns into
clusters that have similar sums. In the Approximate Clustering (AC)
approach, we do not sample uniformly but rather sample a few repre-
sentatives from each cluster of columns to make sure that all column
types are well-represented. Our clustering approach uses either a com-
plete or partial pass of an agglomerative clustering algorithm depend-
ing on the properties of the data (e.g. a complete pass is used when the
number of unique values is high). By selecting the subset of dimen-
sions sampled to represent the variation of column sums in the matrix,
we expect to more accurately predict the actual sum for matrices with
more diverse column sums.

Figure 2 shows the matrix msc00726, representing a structural engi-
neering problem from the Boeing test matrix group [3]. The distribu-
tion of the column sums for this matrix has a high variance (> 1e3) due
to the subsets of values which are orders of magnitude away from the
common range of values in the distribution. However, the histogram
for this matrix shows that there is actually only a small set of unique
column sums ( 3 and 20), which can then be used as clusters in the AC
technique. Therefore, although the structure of the problem may not be
well suited for random sampling, the pattern is dominant enough that
we can cluster and then sample within the similar subgroups.

2.2 Identity Conditioning
Not all sparse problems have a dominant pattern, however. The ma-

trix in Figure 4, Oregon-1 is an example of this type of case, and rep-
resents an undirected graph based on the network included in a portion
of the Internet. This problem has very high variance and an especially
ill-defined distribution, which is not suited for clustering.

To solve this problem we can use the idea of pre-conditioning to
transform the column sums of the original matrix A into more regular
sums of an equivalent linear system. The idea is to choose the check
vector c to be the solution of the identity equation cTA = 1T . If the
identity equation is solved exactly we eliminate the effect of A on the
predicted check entirely, and instead can simply replace it with

∑
x,

since (cTA)x = 1Tx =
∑

x
The vector c can be computed approximately by solving the least

squares optimization problem min∥AT c − 1∥. When executed un-
til the residual reaches < 100 (typically 1-2 iterations), the algorithm
provides a good approximation of the identity equation [1]. Inexact
solutions to cTA = 1T are valuable because they reduce the error of
approximating (cTA)x with

∑
x by reducing the effect of matrix A

on the accuracy of the check. This also makes it possible to use condi-
tioning to improve the accuracy of sampling and clustering because the
natural variance of A is dampened in the product cTA, making a fixed
sampling or clustering of c more representative than when it is done
with 1.
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Figure 1: qpband (Variance = 1.6071) The matrix has a well defined and
low variance(< 1e3) column sum distribution and is a good candidate for
both Approximate Random and Approximate Clustering.
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Figure 2: msc00726 (Variance = 9.4724e14) The matrix has high
variance(> 1e3) column sums. This matrix is a good candidate for clus-
tering given the finite sets of unique values shown above.
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Figure 3: bcsstm37 (Variance= = 6.1668e − 10). The matrix has a well
defined column distribution with low variance(< 1e3) and is particularly
well suited for Approximate Random Technique
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Figure 4: Oregon-1 (Variance = 1065.5). The matrix has column sums
that are less well defined and have high variance(> 1e3). Conditioning is
a good candidate for this particular problem.

2.3 Null Conditioning
We can also eliminate the effect of A and x entirely by finding

a vector in the null space of the problem. We call this null condi-
tioning. We first find the the smallest singular value using singular
value decomposition (SVD). If this value is sufficiently small (below
1e− 6 in our experiments), we use the associated vector as a null vec-
tor of the matrix in the check. The check only then requires verifying
that the dot product of the output of the MV product is equal to zero:
AT v = 0 with v ̸= 0. Therefore, the check is completed by verifying
vT y = 0, where y = Ax. We note that this check can be used for
dense algebra problems as well. For square symmetric matrices, which
are common in practice, SVD reduces to the eigenvalue problem. Our
particular SVD implementation does not need to compute all the sin-
gular values, but instead only computes the smallest singular value and
the associated vector within a relaxed accuracy target.

3. METHODOLOGY
There are various types of faults that can occur in computations. Our

evaluation focuses on transient faults where the behavior of transistors
and circuits is perturbed by various process and environmental varia-
tions. These faults corrupt the outputs of the circuits and may affect the
results of numerical computations. Silent Data corruptions (SDCs) are
typically the most difficult types of faults to detect, as the program will
complete with incorrect results with no indication that the result is sub-
optimal or, in the worst case, unacceptable. Many emerging workloads
are becoming increasingly data-centric [4], making the detection of
faults in data increasingly important. Moreover, errors manifesting in
control, such as memory corruption, deviations of control flow or mem-
ory access errors can typically be caught by using simple low overhead
techniques [8, 9]. Section 4 evaluates the effect of computation faults
within linear algebra operations, such as the MV product (y = Ax).

Additionally, along with considering alternative fault scenarios, we
also consider different application contexts and inputs by using a set of
real world matrices and vectors for publicly-available matrix libraries
from the University of Florida Sparse Matrix Collection and Matrix
Market [3, 5]. The set of matrices were chosen from different classes
and sizes to understand the performance and accuracy of the proposed
detectors across various structures present in real problems.

4. RESULTS AND ANALYSIS
This section discusses experimental results used to evaluate both the

accuracy and performance of the approaches proposed in Section 2.

4.1 Performance Overhead
The traditional algorithmic techniques for fault tolerance are based

on dense checks that result in high overheads when applied to sparse
problems. Figure 5 shows the mean overhead for the dense check for
MV when applied to a set of 50 real sparse matrices. The average
overhead was around 30% but was as high as 80 − 90% for matrices
Bcsstm39 and t3dl_e. The technique’s overhead depends strongly on
the size, sparsity, and locality of the problem. The sparsity of the matrix
influences both the total number of operations and memory efficiency
due to the increase in indirect memory accesses. The overhead rises as
the problem becomes more sparse since this means that the original MV
does less work while the cost of the check remains the same. Matrices
Bcsstm39 and t3dl_e, for which the overhead were the highest, are also
the most sparse , with an average of about one nonzero entry per row.
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Figure 5: Mean, Std dev, Max/min of the runtime overhead of the check
over single MV products for various sparse problems. Depending on
sparsity, locality, and size of the problem, overheads can be high due to
the additional computations and loss of memory locality.

The approximate random check (described in Section 2) exploits the
structure of sparse problems by sampling the matrix column sums and
x to capture the important features of the problem and predict the cor-
responding checksum. Figures 5 and 6 present the runtime overhead of
approximate random over a set of 50 sparse problems. The overheads
of approximate random correspond to a sampling rate of 10% (denoted
RS(.1)). The data shows that the runtime overhead of the approximate
random algorithm is lower than the dense check and has no additional
setup cost.

The clustered sampling check is focused on problems that do not
contain a well behaved and low variance distribution, but still have
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Figure 6: Mean, Std dev, Max/min n of fault detection setup overhead
over single MV products of various sparse problems. Matrix reuse,
which is common within iterative linear algebraic applications, allows
for these overheads to be amortized over the entire application’s execu-
tion.

structure within segments of the problem, as is commonly seen in sparse
problems. It performs additional preprocessing to improve the accuracy
of sampling. Figures 5 and 6 show that this check has the same run-
time cost as random sampling when using the same 10% sampling rate
(denoted CS(.1)) and has a higher setup cost. By trading off runtime
overheads for this higher setup cost (roughly 100x), the total overhead
is actually still significantly reduced. This is because common linear
solvers are iterative in nature and typically reuse the same matrix more
than 10000 times over the application’s execution. This amount of
reuse more than amortizes the cost of setup for the sparse algorithmic
detection techniques. (Section 4.3 discusses further).

In the case that the matrix does not have a clear local or global struc-
ture, identity conditioning can be used to create a more well defined
distribution by smoothing the distribution of cTA to improve detection
accuracy. The effectiveness of identity conditioning is related to the
accuracy with which the identity equation cTA = 1T is solved. For
many problems we find that to detect moderate-magnitude errors it is
only necessary to run the least squares algorithm for 1− 3 iterations.

Finally, null conditioning uses a null vector of the linear system or
its lowest-frequency component to completely smooth the details of the
matrix structure and input vector distribution to a single scalar value of
zero. The smallest singular value and associated vector can also be
found with relaxed accuracy, although the size of this value depends on
the problem. Figures 5 and 6 show that although null conditioning has
the highest setup cost, it also has the lowest runtime cost because there
is no need to compute (cTA)x at all, since it is known to be very close
to 0.

These results show that the proposed techniques can vary widely in
their performance properties, and are also very dependent on the char-
acteristics of the given sparse problem. This provides developers with
a significant amount of power to choose the algorithm that minimizes
overheads in their particular use-case, both in terms of the matrix struc-
ture as well as the reuse pattern of their algorithm.

4.2 Accuracy
This section reports the accuracy with which all our algorithms de-

tect errors of different magnitudes. The accuracy of each fault detec-
tion technique, is evaluated by performing fault injection experiments.
Each algorithm’s ability to detect errors is reported in terms of false
positive rate (FPR) and true positive rate (TPR). The TPR is defined as
the percentage of experiments that correctly detect a fault when a fault
is present. The FPR is defined as the percentage of experiments that
incorrectly detect a fault when no faults are present. An ideal detector
has both high TPR and low FPR for all meaningful errors arising in the
system.

Each algorithm compares the computed check to a threshold, which
then directly impacts the TPRs and FPRs seen. Figure 9 shows the
results of fault injection experiments where the MV product was exe-
cuted 1000 times on each matrix within the set of 50 matrices. In each
run we used a random x and injected an error of magnitude ranging
from 1e − 20 to 1e20. For a given error magnitude, Figure 9 shows

the average FPR associated with the threshold τ that produces a TPR
of 95%.

The dense check has very good accuracy, showing no false positives
at 95% TPR on errors as small as ϵ = 1. In contrast, the sampling used
by the approximate random check has reduced accuracy. It reaches 15%
FPR for ϵ = 1e3 and 0% FPR for ϵ = 1e12 when using 10% sampling.
The impact of the lower accuracy depends on the resilience needs of
the algorithm that utilizes the MV operations. Further, it is possible to
trade off accuracy and performance by using different sampling rates.
At a sampling rate of 1% the runtime overhead is reduced by 50%, with
an associated loss in accuracy.

Clustered sampling improves the accuracy of random sampling for
all the matrices, with a 1-2 order of magnitude improvement in the
smallest magnitude of error which is detected with small a small FPR
(< 1%) and high TPR. In general,the benefits of clustered sampling
over random sampling were the highest for matrices that have high vari-
ance.

The Identity and Null conditioning techniques both can significantly
reduce the smallest detectable error magnitude by an additional 1-2 or-
ders of magnitude. Identity conditioning works particularly well with
problems which have relatively low condition numbers, as these prob-
lems are able to approximately solve the identity equation much more
easily. For example, identity conditioning worked exceedingly well for
fv, shallow_water, and qpband. In the case of qpband, the smallest
magnitude error that is detected with high probability is reduced from
1e3 to 1e− 7, compared to the AR technique.

On average, the null conditioning technique performed worse then
the other techniques, as the majority of matrices used in our experi-
ments contained structurally full ranks (meaning the upper bound on
their rank is full). Therefore, the null-space of these types of prob-
lems, with full rank, were limited to primarily zero vectors, which are
not well suited for detection. We do note, however, that null condi-
tioning is very useful for the subset of matrices that have a smallest
singular values (SSV) less than about 1e − 6. For example, null con-
ditioning is able to detect errors which are 1 − 2 orders of magnitude
smaller than those detected by random sampling, for the matrix Dub-
cova1 (SSV= .00481) .
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Figure 7: Average overhead for the proposed techniques for CG. The
matrices are organized according to sparsity (sparsity values are listed
below the graph)

The proposed sparse techniques are shown to have significant av-
erage runtime performance improvements over the traditional dense
check in the context of a single MV product, while maintaining similar
high detection accuracy under moderate and large error magnitudes.

4.3 Discussion: Linear Solver Applications
In this section, the performance of the fault detection techniques are

considered within the context of one common linear solver application,
the Conjugate Gradient (CG) algorithm. Our proposed approaches are
applied to CG, in order to evaluate the performance benefits in the con-
text of a more complex linear algebra application. With sparse matrices,
the vector and dot product operations within CG can account for nearly
half of the operations used each iteration. We therefore also protect
these operations by using similar dense checks.

Overhead for the setup plus the total overall overhead are shown
in the Figure 7. These overheads are averaged over 100 runs. Each
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matrix on the bottom is labeled with its corresponding sparsity factor
(s =average # of non-zeros per row). The matrices are ordered in
according to the the degree of sparsity. Moving from left to right, the
matrices are less sparse.

Figure 7 illustrates how common linear algebra application typically
exhibit large amounts of reuse. The setup overhead of computing the
column sums is negligible (< 1%), because of this large amount of
reuse. The overhead of the dense check, in the context of CG, is also
shown to result in large performance overheads (30−50%) when using
sparse matrices.

The reduction in total overhead is smaller (5 to10%) compared to an
application which only uses MV products (Power series, Eigen solver),
because much of the time is also spent on linear vector operations and
nonlinear dot products. Extending the sparse techniques for approxi-
mating the dot product operation is the subject of future work. The re-
duction in overhead can be nearly cut in half when only the time spent
computing MV products is considered (Figure 8).

5. CONCLUSIONS
The ability to detect and correct application faults for future error

prone and energy constrained computing systems is of critical impor-
tance. Our paper focuses on low overhead fault detection for sparse
linear algebra algorithms which represents the core of a large class of
emerging applications.

In this paper, we showed that previous checksum-based approaches
for linear algebra fault detection in the context of dense problems may
have high overheads for sparse problems (30% to 90%). We presented
approaches that reduce the overhead of fault detection for sparse lin-
ear algebra-based problems by up to 2x by exploiting structure in the
problems. Proposed approaches worked for both problems that are rela-
tively well distributed and of low variance (through random and cluster-
ing based sampling) as well as for problems that have less well defined
characteristics (through identity and null conditioning).
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Figure 9: Accuracy for symmetric positive definite matrices. Both the
mean and variance of the measurements are shown. Note: The x-axis
is log scale from 1e− 15 to 1e15.


