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Abstract

Instruction cache aware compilation seeks to lay out
a program in memory in such a way that cache conflicts
between procedures are minimized. It does this through
profile-driven knowledge of procedure invocation patterns.
On a multithreaded architecture, however, more conflicts
may arise between threads than between procedures on the
same thread. This research examines opportunities for the
compiler to optimize instruction cache layout on a multi-
threaded architecture. We examine scenarios where (1) the
compiler has knowledge about multiple programs that will
be or are likely to be co-scheduled, and where (2) the com-
piler has no knowledge at compile time of which applica-
tions will be co-scheduled. We present solutions for both
environments.

1 Introduction

Instruction cache aware compilation [8, 10, 13, 7, 17,
9, 14, 6] seeks to lay out a program in memory in such a
way that instruction cache conflicts between procedures are
minimized. It does this through profile-driven knowledge
of procedure invocation patterns, taking procedures that are
frequently invoked near in time and placing them in mem-
ory such that they do not conflict in the instruction cache.

On a conventional, single-threaded processor these tech-
niques exploit the typically highly predictable pattern of
procedure call invocations to anticipate conflicts. How-
ever, on a hardware multithreaded architecture, such as si-
multaneous multithreading (SMT) [21, 20], conflicts also
arise between threads on the same processor due to time-
sharing of the instruction fetch unit. In many cases, these
inter-thread conflicts are higher than intra-thread conflicts,
as demonstrated in Figure 1. For these pairs of applica-
tions, intra-thread conflicts account for 20.47% of all misses
on average, while inter-thread conflict misses account for
21.21%. It is not surprising to see more inter-thread con-

flicts, as an SMT processor’s fetch unit switches between
threads as often as every cycle, while procedure calls (the
most common cause of intra-thread conflicts) typically hap-
pen at a much lower frequency. This research will demon-
strate that not only do existing layout techniques fail to ad-
dress inter-thread conflicts, but in many cases they actually
exacerbate the problem.

Unlike intra-thread conflicts, inter-thread conflicts are
typically non-repeatable and difficult to predict, requiring
different techniques than those that work on single-thread
workloads. However, this research demonstrates that we
can build on and extend existing single-thread instruction
cache optimization mechanisms to effectively reduce these
inter-thread conflicts.

We consider three scenarios where instruction cache lay-
out can be applied to a multithreaded workload:

(1) We have knowledge of all or some programs likely
to be co-resident, and have control over the code generation
of each of those programs. Workloads where this would
apply include a very static workload (e.g., a server environ-
ment, long-running simulations, or an embedded environ-
ment), applications that are typically tied together through
a pipe (gzip and ghostview, for example) or other communi-
cation mechanism, or any multithreaded application where
threads follow relatively different paths through the code.

(2) A program is compiled with some knowledge of what
application(s) will be co-resident with it, but the compiler
has no control over the other programs. In this case, the
program can still be compiled to avoid conflicts with the
existing programs. This includes all of the scenarios above
(but where we lack the ability to remap all programs). It
also works when one application (e.g., gzip, a web browser,
or the operating system) expects to be paired with several
different partners at various times. It could also be applied
on a system with support for run-time or load-time code
modification, which can optimize the one program being
introduced into the running set.

(3) We have no knowledge of which jobs will be
coscheduled. Here, we assume the operating system does



Figure 1. Percentage of instruction cache
misses due to conflict misses, classified as
inter-thread or intra-thread conflicts. The
cache is a 32 KB direct-mapped cache run-
ning two threads on an SMT processor.

have some control over the mapping of logical pages to
cache lines (the same assumption that standard instruction-
cache layout optimizations typically must make). This
would be the case when the physically-addressed cache is
bigger than the system page size, or if the system has some
simple support for cache page coloring [14]. In this, the
most general case, we compile each program in such a way
that the operating system will be able to map applications
to minimize conflicts between jobs in the running set.

Between these techniques, we account for essentially
any workload that is susceptible to inter-thread instruction
cache conflicts.

This paper is organized as follows. Section 2 discusses
previous and related work. Section 3 provides background
information on simultaneous multithreading and instruction
cache layout research. Section 4 describes the measure-
ment methodology. Section 5 describes techniques for co-
ordinated compilation of programs likely to be co-resident,
and Section 6 presents mechanisms for compiling one pro-
gram given some knowledge of other programs it is likely
to be run with. Section 7 discusses compiler and OS mech-
anisms which reduce instruction cache misses even in the
case when the mix of applications which will be run to-
gether is not known a priori. Section 8 shows that these
techniques work across a range of cache associativities and
sizes. We conclude in Section 9.

2 Related Work

This work builds on a large body of existing work in
compile-time and run-time code-placement techniques to
reduce the number of cache conflicts for a single program.

Most of the prior work in the area of compile-time code
placement is concerned with reordering of popular code-
blocks such that mutual interference in the instruction cache
is minimized. Some of the earliest work in this area was
done by Hwu and Chang [8] , McFarling [10], and Pettis
and Hansen [13].

Hwu and Chang describe an algorithm for improving in-
struction cache performance using inlining, basic block re-
ordering and procedure reordering compiler optimizations.
They use a Weighted Call Graph (WCG) and a proximity
heuristic to address the problem of basic block placement.
McFarling examines improving instruction cache perfor-
mance by not caching infrequently used instructions. He
represents the program as a DAG of procedures, loops and
conditionals. The algorithm tries to partition the graph, con-
centrating on the loop nodes, so that the height of each par-
titioned tree is less than the size of the cache. Pettis and
Hansen also describe a number of techniques for improving
code layout that include basic block reordering, procedure
splitting, and procedure reordering.

More recent work was done by Hashemi et al. [7], Tor-
rellas et al. [17], Kalamatianos and Kaeli [9], Sherwood et
al. [14] and Gloy and Smith [6]. Hashemi et al. improve
the Pettis and Hansen algorithm by computing which lines
are occupied by which procedures. Torrellas et al. propose
an algorithm designed for mapping operating system code
to increase performance. Kalamatianos and Kaeli define a
structure called a Conflict Miss Graph (CMG) to keep track
of temporal ordering information. Sherwood et al. propose
a color mapping at compile time for code and data pages,
which can then be used by the operating system to guide its
allocation of physical pages. Gloy and Smith use a Tem-
poral Relationship Graph (TRG) that summarizes the infor-
mation about interleaving of procedures in a program trace.
Their algorithm, also known as Temporal Profile Conflict
Modeling (TPCM), applies the maximum-overlap strategy
to place the procedures in the cache greedily. The optimiza-
tions presented in this work extend TPCM in various ways
to accommodate a multithreaded processor. The details of
the algorithm are discussed in Section 3.

Dynamic schemes monitor the behavior of the system
and perform runtime optimizations based on this behavior.
Chen and Leupen [5] present a technique for just-in-time
code layout which loads procedures into the text segment
in the order in which they are invoked. Bugnion et al. [3],
examine compiler-directed page coloring for arrays on mul-
tiprocessors. The Impulse project [4] provides a compiler
controlled memory controller. The impulse address space
can be remapped by a new strided address calculation or an
indirection vector for an array. Yamada et al [22] propose
a similar scheme for L1 cache. Bershad et al. [2] introduce
a hardware device called the Cache Miss Lookaside (CML)
buffer that records and summarizes the cache-miss history.



They use CML to detect conflicts caused by page mapping
and remove conflicts by dynamic remapping of pages. Sher-
wood, et al. [14] add a page remap field to the TLB which
allows a page to be remapped to a different color in the
physically indexed cache while keeping the same physical
page in memory.

Our work is unique in addressing the problem of inter-
thread cache conflicts on a multithreaded processor.

3 Background

A simultaneous multithreading processor [21, 20] is a
hardware multithreading architecture which has the ability
to issue instructions from multiple threads to the execution
units in a single cycle. All threads compete for all proces-
sor resources each cycle, maximizing utilization of the pro-
cessor. One of the fully shared resources is the instruction
cache. This architecture has been shown to significantly in-
crease the throughput of the processor, for relatively small
hardware cost.

SMT processors are poised to appear in the market-
place. The Alpha 21464 [11] was originally announced
to feature SMT, and Intel has announced that both desktop
and server processor lines will feature simultaneous multi-
threading [12].

Temporal Profile Conflict Modeling has been shown to
be an effective code placement algorithm for I cache per-
formance [6], and represents the starting point for this re-
search. TPCM is based on temporal profile data and ac-
curately models cache mapping conflicts. It uses a Tem-
poral Relationship Graph (TRG) to find a cache-relative
alignment for each procedure that minimizes cache con-
flicts. Then it produces a procedure ordering and layout that
may include gaps between procedures to achieve the desired
cache-relative alignment. This ordering can be used by the
compiler, linker or other code reordering tool to produce an
executable with the correct procedure addresses.

Given a trace of code block references, a TRG for the
trace can be defined to be a weighted undirected graph, with
a node for each code block, and where an edge between
nodes A and B has a weight I(A,B) where I(A,B) is the
number of times that two successive occurrences of A are
interleaved with at least one reference to B, and vice versa.

TPCM can be applied to code blocks of any granularity.
However, Gloy and Smith apply it to procedures to obtain a
procedure TRG and simultaneously generate a chunk TRG
as well (corresponding to procedure chunks of fixed size).
To reduce overhead, they select a set of popular procedures
and focus only on these during the trace processing.

TPCM uses a working graph derived from the procedure
TRG. The working graph structure and the edge weights are
copied from the procedure TRG. The heaviest edge in the
working graph E(A,B) is repeatedly found and the two nodes

joined by this edge, A and B, are combined. At this point,
A and B are aligned relative to each other by choosing the
relative offset (in cache lines) between A and B that causes
the least number of estimated conflicts.

The correct relative offset is found by considering all
possible relative layouts in cache. For each value of dis-
placement d (less than the number of cache lines), the cache
line locations for all procedure chunks are computed. If we
add the chunk-TRG edge-weight for each pair of chunks
(I,J) mapped to a particular cache line, such that I is a node
in chunk-TRG(A) and J is a node in chunk-TRG(B), this
gives us the estimated cost of mapping conflicts for this
cache line. This sum computed over all cache lines is the
estimated cost of combining A and B using displacement d.
The value of displacement which results in a minimum cost
as well as maximum overlap is chosen as the relative offset
for the merge of A and B.

The working graph is updated to adjust for the merging
of A and B into node AB. Merging continues until there
are no more edges left. A complete layout is generated
from procedure alignments simply by leaving an appropri-
ate amount of empty space before each procedure.

On a multithreaded architecture, procedure interleavings
represent only one source of conflict misses. The other is
the inter-thread switching within the fetch unit. If we can
create an estimate of the frequency of “interleavings” be-
tween procedures of different threads, we can incorporate
new edges into our TRG algorithm to account for these.

An estimate for the number of conflicts that a code-block
A belonging to program P1 will have due to code block B
belonging to another program P2 for a given cache layout
of A and B can be expressed as:

Conflicts�A�B� � �ET �A���ET �B�� switching

This is a probabilistic estimate based on the likelihood
that both procedures are being run at once. Here %ET(A)
is the execution time of A expressed as a percentage of the
total execution time of P1. switching is the number of times
execution of program P1 was interleaved with execution of
P2. This expression serves as the basis for the calculation
of inter-program conflicts in subsequent discussion.

4 Methodology

Table 1 summarizes the benchmarks used. All come
from the SPEC2000 benchmark suite. These benchmarks
were chosen such that about half have “good” instruction
cache behavior (less than 3% miss rate) and half have “bad”
I cache behavior (by SPEC2000 standards). The multi-
thread workloads are composed of sets of programs taken
from this list. The two-thread workloads, for example,
include bad-bad, good-bad, and good-good combinations.



Program Hit-rate Training Input Reference Input

ammp 99.64 ammp.in (train) ammp.in (ref)
art 100.00 c756hel.in (train) c756hel.in (ref)

applu 100.00 applu.in (train) applu.in (ref)
gzip 99.93 input.combined input.log
twolf 98.99 train ref
crafty 86.91 crafty.in (train) crafty.in (ref)
eon 94.23 cook (train) cook (ref)
perl 92.85 scrabbl makerand

vortex 84.82 lendian.raw lendian3.raw
vpr 96.84 train ref

Table 1. Benchmarks simulated, included
single-thread I cache hit rates for a 32 KB DM
cache.

The pairings are otherwise arbitrary. Although the pre-
vious section describes a wide set of environments where
these techniques might be particularly appropriate (mul-
tithreading applications, threads communicating through
pipes, etc.), we focus our attention in this paper on the most
difficult scenario, where multiple applications run without
communication, giving us no basis for predicting how they
interact. This paper examines configurations larger than two
threads, but the majority of our results and most of the dis-
cussion of techniques focus on the two-thread case.

The baseline processor simulated is an 8-issue simulta-
neous multithreading superscalar processor configured as
specified in Table 2. We assume a 32KB direct-mapped in-
struction cache. Heavy cycle time pressure in modern pro-
cessors is applying significant downward pressure on L1
cache size and associativity (which will be coupled with
deeper memory hierarchies), making this a liberal estimate
of L1 cache resources for this study. The Itanium proces-
sor, for example, features a 16K instruction cache (4-way
set-associative), and cycle time constraints will continue to
put pressure on both those numbers for L1 caches. These
techniques become more critical as caches shrink. Other
cache sizes and associativities are considered in Section 8.

Processor simulation uses the SMTSIM [18] instruction-
level simulator, which emulates unaltered Alpha executa-
bles, and models all typical sources of processor latency
and conflict. The programs are run on the reference data
sets and trained on the SPEC-supplied training data sets.
Simulations are run for 1 billion instructions.

We use ATOM [16] to generate the procedure call-traces
and other profile information as input to our code mapping
algorithms. For all the algorithms, the TRG is composed
of popular procedures only. Our definition of an unpopular
procedure is one whose execution time is less than 1% of
the total execution time.

Most of our algorithms require the number of context-
switches (switching) as a parameter. On an SMT processor,

Parameter Value

Fetch Bandwidth 2 threads 8 instructions total
Functional Units 3 FP, 6 Int (4 load/store)

Instruction Queues 32-entry FP, 32-entry Int
Inst Cache 32KB, direct-mapped, 32-byte lines
Data Cache 64KB, 2-way, 64 byte lines

L2 Cache(on-chip) 1 MB, 4-way, 64-byte lines
L3 Cache(off-chip) 4 MB
Latency(to CPU) L2 6 cycles, L3 18 cycles,

Memory 80 cycles
Pipeline depth 9 stages

Min branch penalty 7 cycles
Branch predictor 4K gshare

Instruction Latency Based on Alpha 21164

Table 2. Processor details.

a context switch (from the perspective of the I cache) hap-
pens every time the fetch unit goes from fetching one thread
to another. Since our baseline SMT processor fetches from
up to two threads per cycle, we assume a level of switching
of once per cycle. The techniques described in this paper
are by no means specific to SMT. By simply changing the
switching factor, we can accommodate a coarse-grain mul-
tithreaded processor [1] or even a single-threaded processor
with infrequent, OS-initiated context switches. However,
the benefits of our techniques are greatest in the SMT envi-
ronment.

This type of study represents a methodological chal-
lenge in accurately reporting performance results. In mul-
tithreaded experimentation, every run consists of a poten-
tially different mix of instructions from each thread, mak-
ing relative IPC a questionable metric. This paper will
use weighted speedup, a metric proposed by Tullsen and
Brown[19]. Weighted speedup is given by:

WS �
�

number of threads

X

threads

IPCnew

IPCbaseline

Weighted speedup much more accurately reflects
system-level performance improvements, and makes it
more difficult to create artificial speedups by changing the
bias of the processor towards certain threads. We refer the
reader to [19] and [15] for more detailed discussion of the
metric.

5 Coordinated Compilation

This section describes techniques applicable any time the
compiler or code generator has access to multiple jobs likely
to be co-executed. This might be a regular or long-running
workload, a special-purpose processor or environment, or a
set of applications that typically run together (e.g., gunzip
and postscript, or a web browser and acrobat). In this case,



Figure 2. Miss rates when both the programs
of every pair have a layout generated by TPCM
without accounting for inter-thread conflicts.

we assume the ability to compile (or re-layout) both (or all)
of the programs at the same time. This creates two sep-
arate executables with reduced instruction cache conflicts
between them.

The light-gray bars of Figure 2 shows the miss rates
for 12 benchmark-pairs. The aggregate instruction cache
miss rates for these pairs vary from 0.5% (ammp-art and
ammp-applu) to 21.9% (vortex-crafty). Figure 2 also shows
the results when TPCM is applied to each of the programs
in the workload individually. In this and all future fig-
ures, the baseline result represents the applications with
no special code-layout optimizations, and TPCM refers to
the multithreading-oblivious optimization TPCM applied
to each program independently. For some benchmark-
pairs (ammp-applu, ammp-gzip, applu-gzip, twolf-gzip),
the miss rate after applying TPCM is more than the base-
line case, implying that any reductions in intra-thread con-
flicts are more than counteracted by increases in inter-thread
conflict due to the remapping. For ammp-gzip, the miss
rate increases by more than 100%. This happens because
when both applications are optimized to spread out and use
the whole cache effectively, oblivious to other coscheduled
threads, it can increase the likelihood of conflict between
them.

For our techniques, which account for inter-thread con-
flicts, we assume the same profile-generated information
typically used by code layout optimizations for each pro-
gram, but no special knowledge of interactions between the
programs. We modify the TPCM algorithm described in
Section 3. We begin by generating TRGs for both pro-
grams. The TRGs represent the switching activity between
all nodes (procedures) of the same program. We then add
edges between nodes of the two graphs to indicate expected

switching activity between procedures/cache lines of the
two programs. The weights of the edges added represent an
expected amount of switching-caused conflicts, as derived
in Section 3.

We do not add edges between all possible pairs of nodes,
but only those that will have the highest edge weights, po-
tentially causing the most conflicts. We show that as few as
one added edge can improve performance.

Once the two TRGs are combined into a single graph,
we iterate over the combined TRG in decreasing order of
weights and generate the cache-relative offset for all the
nodes in a manner similar to TPCM. This cache-relative
alignment can be used to dynamically remap cache accesses
by each program during execution. Then each program is
mapped individually according to the offsets computed for
each node belonging to that program. This is accomplished
simply by leaving appropriate gaps between programs.

Though the algorithm and results are presented for two
programs only, it can be trivially generalized to multiple
programs as well. If there are m programs that run to-
gether, all the m TRGs are combined by drawing edges
between nodes selected on the basis of SWITCHING val-
ues. Again the new edges create a single graph, and we can
apply TPCM on it to generate a cache layout as before.

Figure 3 shows that we can get significant improve-
ments with even a single added edge between the TRGs (M-
TPCM-1 in that figure, which denotes multithreading-aware
TPCM, with one added edge). Making one connection gives
us an improvement over the baseline in all but one case. The
relative decrease in miss rate is as high as 68.6% (twolf-
applu). Average improvement is 8.8% over raw-execution
and 9.7% over TPCM. However, for several pairs, TPCM
(applied on individual threads) still outperforms our tech-
nique with a single connection. This happens due to two
factors. One is the disconnect with the profiled data set.
Second is the limited information from only adding a sin-
gle edge — adding a small number of edges has something
of a randomizing effect, and we may create other important
inter-thread conflicts if they aren’t specifically represented
by a node edge. We address the second factor by adding
more edges.

When adding 4 inter-thread TRG edges, we get relative
miss rate improvements up to 68.45% (twolf-applu). Av-
erage improvement is 9.94% over the baseline and 10.91%
over TPCM. Also, the improvements are more than TPCM
(applied on individual threads) for all but one (vortex-
crafty) pairs. For 16 added connections, the average im-
provement is 4.53% over raw-execution and 5.57% over
TPCM. With 16 edges, we over-constrain the mapping, and
produce less desirable layouts for some applications.

Figure 4 shows the impact of our algorithm on over-
all performance. Average speedups with 4 connections is



Figure 3. Instruction cache miss rates when
multithreading-aware layout is applied by
adding 1, 4, or 16 graph edges.

11.34% (maximum 37.2%) over the baseline and 6.41%
(max 37.11%) over TPCM alone.

These results demonstrate that when multiple applica-
tions are known at compile time to likely be co-resident, we
can improve the overall performance by taking into account
profile-generated information about these threads.

Previous work in code layout typically uses profile-
generated information, generally requiring something that
looks like a dynamic call graph, which is relatively easy to
collect in many systems. These algorithms do not use more
detailed information because they do not need it. For exam-
ple, if procedure A calls procedure B, B can only evict lines
of A once (causing one conflict miss each), no matter how
many times lines in B are executed.

We have constrained our algorithms to use the same type
of information as the single-thread techniques to more di-
rectly compare them; however, that does not show our tech-
niques in the best light, because we can take great advantage
of lower-level detail. For inter-thread conflicts, it matters
whether a line in procedure B is executed once or a million
times, because the opportunities for inter-thread conflicts
are much greater in the latter case. Even if we constrain our
algorithm to only remap code at a procedure granularity, we
can still use this data. If we are forced to map two proce-
dures on top of each other, we can then do it in such a way
that the most popular lines in each procedure do not con-
flict. As a specific case study, we generated a more detailed
profile for the eon-vpr pair. Doing some basic remapping of
procedures with this extra information allows us to increase
the combined hit rate from 90.60%(baseline) to 91.04%.
The hit rate for M-TPCM without using this extra infor-
mation was 90.71%. Further results in this paper rely only

Figure 4. Weighted speedups when
multithreading-aware layout is applied
by adding 1, 4, or 16 graph edges.

on the coarse-grain profile information, again to most easily
compare with prior work.

The next section shows that gains are still possible when
only one program is available for recompilation, as long as
some runtime information is known about the overall work-
load.

6 Informed Single-Thread Compilation

This section assumes the ability to compile, recompile,
or remap only a single program, as long as profile infor-
mation is know about each (or perhaps some) of the pro-
grams that will be co-resident. This would apply if some of
the programs come precompiled, one program has many co-
resident mates (e.g., gunzip) and can’t be co-compiled with
each, or in a dynamic compilation or load-time application
of these techniques, where typically only one new job at a
time enters the jobmix.

In this case, we will start out with one program (or more)
and its initial layout generated by the compiler, and we will
lay out the second program so as to minimize conflicts be-
tween the two (as well as minimize same-program conflicts
in the second program). We will refer to the initial program
which we cannot remap as the static program, and the other
program as the new program.

We assume that we have the TRG and profile informa-
tion corresponding to the new program. We also assume
that we have information about size and execution time of
procedures of the static program. To generate a cache layout
for the new program, we need to find the best cache-relative
displacement for every procedure in the new program.

To determine the order in which we choose the proce-
dures for placement, we define a metric called interleave-



Figure 5. Miss rates when first program
of every pair has a naive layout and a
multithreading-aware layout is generated for
the second program.

value. Interleave-value is the maximum number of esti-
mated cache conflicts which a code-block belonging to the
new program can have due to all procedures in the static
program. If A is a node belonging to some TRG, then the
interleave-value of A can be given as:

Interleave�A� � �ET �A�� switching

We find the interleave-value for all the nodes belong-
ing to TRG (new) and sort the nodes in decreasing order of
these values. We take the node with the highest interleave-
value and find the cache-relative offset for it by calculating
cost for all possible placements in the cache and choosing
the displacement with the least cost (the expected number
of conflicts, considering both the static program and previ-
ously mapped procedures of the new program). Cost due
to code-blocks belonging to the same (new) program is cal-
culated using standard TPCM techniques. While calculat-
ing costs due to conflicts with code-blocks belonging to the
static program we again use the estimated value for switch-
ing conflicts derived in Section 3.

Once we have placed a procedure, we remove its node
from the list and choose the node with the next-highest in-
terleave value. We continue until we have found the cache-
relative offset for all nodes belonging to the new program.
This algorithm chooses the order for placement only consid-
ering inter-thread conflict potential, but this works because
the order is determined by execution time, which is also an
effective ordering for minimizing intra-thread conflicts.

Though the algorithm is again given for two programs
only, it is also easily generalized to the case where one pro-
gram is added to a set of multiple pre-compiled programs.
The case where a set of multiple programs is added to an

Figure 6. Impact on execution performance
when first program of every pair has a naive
layout and a multithreading-aware layout is
generated for the second program.

existing set is less straightforward, but can most easily be
adapted from this case by adding them one at a time.

Figure 5 shows the effectiveness of this technique. In
each case, the “static” program has no layout optimiza-
tion applied. The baseline represents no optimization to
the new program. TPCM applies multithreading-oblivious
TPCM to the new program, and informed-TPCM applies
our multithreading-aware technique to the new program.
We observe that applying TPCM leads to deterioration in
cache miss rate for many pairs (ammp-applu, ammp-gzip,
applu-gzip, twolf-gzip and eon-perl). Our algorithm re-
sults in relative miss-rate improvements up to 92.3% (twolf-
gzip). Average miss-rate improvement is 21.9% over the
baseline, and 18.5% over TPCM.

Figure 6 shows the performance results. Our algorithm
results in speedups up to 37.2%. Average speedup is 12.5%
over the baseline and 11.1% over TPCM.

This section demonstrates that we need compilation ac-
cess to only one of the co-resident applications to get sig-
nificant improvements in instruction-cache performance, as
long as we have some knowledge about the future co-
resident workload.

The next section shows that performance improvements
can be achieved even when we lack that information.

7 Compiler Support for Dynamic Cache
Conflict Avoidance

The previous section relaxed the constraint that we need
co-compilation access to co-resident applications. In this
section we relax the constraint that we have any pre-runtime
knowledge of application co-residency. The only require-



ment we add is a minimal amount of either operating system
or architectural support (similar to what traditional TPCM
assumes). Thus, each program is compiled using only in-
formation known about the application itself. But it does
assume that the other applications running were also com-
piled with a compiler that followed the same conventions
described here.

The key to these techniques is the realization that code
layout techniques like TPCM do not rely on forcing equal
access to each cache line, but only separate procedures
prone to interleaving. So, for example, if the three most
popular procedures are not typically interleaved, they can
be mapped to the same portion of the cache without affect-
ing performance. This insight allows us to tweak the TPCM
algorithm to intentionally create highly uneven mappings.
That is, certain portions of the cache are accessed more
heavily than others, but in a predictable way.

But we also must ensure that the threads do not each
stress the cache in the same way. We assume that the oper-
ating system has some control over the mapping of virtual
address to instruction cache lines. In a system with phys-
ically addressed instruction caches that are larger than the
page size, code layout techniques require operating system
support to ensure that a page the compiler thought would be
mapped onto page 2 of the cache does indeed occupy that
page. The OS might do this through a page-coloring page
allocation mechanism. We assume the same type of sup-
port here. This technique could be adapted to a virtually-
addressed cache by simply adding a small bit of hardware
to the cache lookup logic which xors certain bits of the vir-
tual address with the hardware thread id, forcing the same
virtual address on different threads to map to different re-
gions of the cache. More details on hardware remapping
can be found in [2] and [14].

This represents the most general scenario where we have
no compile-time information about other threads that a par-
ticular thread might run with. All we know is the max-
imum number of threads (or, perhaps, the most common
number) that will run at once. We can exploit this by cre-
ating a biased, or uneven, layout for each thread. As long
as these programs are biased in a predictable way, the op-
erating system can map them into the instruction cache ap-
propriately. For example, in a system with four threads,
we would compile each program so that the virtual ad-
dresses that correspond to the first quadrant of the cache
are accessed more heavily than the other quadrants. When
the operating system allocates physical pages, it does it
in such a way that co-resident threads map their heaviest
quadrant to a different quadrant in the physically-addressed
cache. That is, thread 0 might be constrained such that
virtual pages are mapped to physical pages with the same
address modulo the cache size. Thread 1 virtual pages
are mapped to physical pages with the same address plus

Figure 7. Miss rates when both the programs
of every pair are mapped dynamically accord-
ing to our algorithm

cache size/number threads, modulo the cache size. This
decreases the chance that popular procedures belonging to
different programs conflict with each other.

To determine the order in which we choose procedures
for placement, we extend the definition of interleave-value
to include the total number of estimated cache conflicts
which a code-block belonging to a program can have due to
other procedures in the same program, as well as expected
conflicts with other programs. This implies that we’ll be
placing procedures with high execution time (and thus high
conflict cost) earlier in the algorithm than standard TPCM.

Hence, if A is a node belonging to some TRG, then the
interleave-value of A can be given as:

Interleave�A� � in edge wts��ET �A�� switching

where in edge wts is the sum of the weights of all edges
incident on A.

We choose the nodes in decreasing order of interleave
values and find the best cache-relative offset using a method
similar to the ones used in the prior sections.

However, to ensure that the generated layout is top-
heavy, we assume that every cache-line except those be-
longing to the first 1/T of cache, where T is the maximum
number of threads, offer a constant bias-resistance to all
the code-blocks mapped to that line. This bias-resistance
is added to the cost of mapping a code-block to a particular
cache-line.

The cache layout which is generated is top-heavy be-
cause the popular procedures (i.e. with high interleave val-
ues and execution time) get placed early, at the top. The
less popular procedures then only get placed in the lower
portions of the cache if there is sufficient interaction with
those procedures already placed in the first section. Since



Figure 8. Impact on execution performance
when both the programs of every pair are
mapped dynamically according to our algo-
rithm

the layout is generated using a TPCM-based algorithm, the
number of conflicts with the procedures belonging to the
same program is still kept low.

This algorithm can easily be used for dynamically map-
ping the cache accesses because the operating system is not
required to know profile information about the programs.
However, if not all programs are compiled in this manner,
the OS could use some runtime or profile information to
identify which parts of the instruction cache those programs
would use most heavily.

Figure 7 shows the results of applying top-heavy compi-
lation with dynamic mapping. Our algorithm results in im-
provement in miss rate for all but one case (ammp-applu).
Relative miss rate reductions are up to 92.6% (applu-gzip).
Average reduction is 24.7% over the baseline and 22.3%
over TPCM.

Figure 8 shows the impact on overall performance. Av-
erage speedup is 12.7% (max 41%) over the baseline and
6.6% over TPCM.

When four threads are running together (Figure 9), this
algorithm results in relative miss rate reductions over the
baseline of 26.8% on average. Performance improvements
are more modest (3-6%), as the system becomes more tol-
erant of instruction cache misses with more threads.

Because we depart from traditional TPCM to generate
program layouts, it would be expected that we sacrifice
some single-thread performance (i.e., in the case where only
one thread is being run) to achieve this higher multiple-
thread performance. In fact, this is not the case. In 8 out of
12 cases (and the average case), miss rates are lower for our
threads than with regular TPCM, when running alone. The
traditional TPCM algorithm does not accurately account for
the total number of cache conflicts when it calculates in-

Figure 9. Miss rates when all the four pro-
grams are mapped dynamically according to
our algorithm

terleave values between procedures. The total number of
potential conflict misses are a factor of both the number
of interleavings, and the static sizes of the two procedures.
TPCM only accounts for the first in selecting the order in
which procedures get placed. We do not directly account
for this, but because execution time is somewhat correlated
with static code size, we end up with a better ordering of
procedures for placement.

Relative to standard TPCM, then, this technique provides
both higher multiple-thread performance and higher single-
thread performance.

One concern about this technique is that it could con-
strain the operating system’s ability to schedule jobs. If a
job has its heavy region mapped to the second quadrant,
and the jobmix changes significantly, we would not want to
later schedule it with another job that mapped its heavy re-
gion to the same quadrant. However, it is hard for the OS to
change these mappings. If the mapping is done in hardware,
rather than using virtual memory, the OS has more free-
dom to change a job’s mapping over time. Otherwise, there
may be some cases where it is best to physically move some
physical pages if two jobs are likely to be co-scheduled to-
gether for a long period.

8 Generality of Results

This work has focused on direct-mapped caches because
those are most prone to conflict miss problems. But conflict
misses are by no means exclusive to those caches. This sec-
tion will show that these techniques continue to be impor-
tant even with associative caches, as well as with different
cache sizes.



Figure 10. Miss Rates for various Cache Con-
figurations

The techniques discussed so far adapt easily to associa-
tive caches. For M-TPCM, we can treat a 32 KB 2-way set
associative cache as a 32 KB direct-mapped cache and ar-
rive at a good mapping. For dynamic mapping, we would
want to treat it as we would a 16 KB direct-mapped cache,
to insure that the heavy portions of two threads are not
mapped together.

Figure 10 shows the reduction in miss rates using both
the multithreading-aware M-TPCM technique which lays
out both threads, and the dynamic mapping results. Note
that for these results, the relative magnitude of the miss rate
reductions, even with the associative caches, is maintained.
Similarly, Figure 11 shows that speedups are still available
for associative instruction caches with these techniques.

9 Conclusions

On a simultaneous multithreading processor with a
shared instruction cache, inter-thread conflict misses can be
more important than same-thread conflict misses, rendering
traditional cache layout optimizations ineffective.

This paper demonstrates techniques that can be applied
when multiple programs are compiled at the same time in
anticipation of being co-scheduled on the processor. In
that case, our best compilation technique results in an aver-
age 11% performance improvement over a system with no
instruction cache mapping applied, nearly double the im-
provement provided by a remapping algorithm which ig-
nores inter-thread conflicts.

In the case where the compiler has access to only one of
the co-resident threads, we demonstrate techniques for com-
piling the one program given some profile-generated knowl-
edge of the other program(s).

Figure 11. Impact on Performance for various
Cache Configurations

We also demonstrate a dynamic technique that can map
each program independently at compile time, and with mi-
nor OS support, map them into the cache at runtime so as
to minimize conflicts. This technique achieves an average
13% improvement with two threads and 27% improvement
with four, over no remapping.

These techniques provide a set of optimizations that
can be applied to virtually any workload that is prone to
instruction-cache conflict misses between thread, whether
or not the compiler has access to, or even knowledge of,
co-resident threads.
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