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Abstract

In this paper, we treat multi-core processor design
space exploration as an application-driven machine learn-
ing problem. We develop two machine learning-based tech-
niques for efficiently exploring the processor design space.
We observe that these techniques result in multi-core pro-
cessors whose performance is comparable (within 1%) to
a processor design that requires an exhaustive exploration
of the design space. These techniques often take orders of
magnitude (a factor of 3800 at the minimum) less time for
coming up with these processors. The benefits are up to 13%
over intelligent search techniques that have been adapted to
do multi-core design space exploration.

We leverage the knowledge gained in this research to de-
velop Magellan — a framework for accelerating multi-core
design space exploration and optimization. Magellan can
be used to find the highest throughput processors of a given
type for a given area, power, or time budget. It can be used
to aid even experienced processor designers that prefer to
rely on intuition by allowing fast refinements to an input de-
sign.

1 Introduction

Conventional methodologies for designing a processor
have relied heavily on large-scale simulations to evaluate
the various architectural possibilities. However, simulations
often take long and can limit the number of possibilities that
can be considered for a given time budget.

This paper recognizes that an exhaustive simulation-
based approach to explore the processor design space may
not scale well for future heterogeneous multi-core proces-
sors. In this paper, we treat the processor design exploration
problem as an application-driven machine learning problem
(while also borrowing the idea from the uniprocessor space
of using search techniques to do processor design) and de-
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velop techniques that are based on using application charac-
teristics to eliminate processors that would be a bad match
for the expected workload universe. We propose two ma-
chine learning-based algorithms to prune the search space.
The proposed techniques can reduce the search space by up
to 13% (9% on average) even over using search algorithms.

We leverage the knowledge gained in this research to de-
velop Magellan — a framework for accelerating multi-core
design space exploration and optimization. Magellan is pre-
sented with a library of cores that are used to create chip
multiprocessors and a set of applications representative of
the workload universe. Given this information, Magellan
can be used to find the highest throughput processors of a
given type for a given area, power, or time budget. It can be
used to aid even experienced processor designers that prefer
to rely on intuition by allowing fast refinements to an input
design.

To put the work presented in this paper in context of
previous work, there has been recent work on accelerat-
ing multi-core design space exploration either through sta-
tistical inference [5] or through predictive modeling [3].
Our approach is orthogonal to those approaches. Simi-
larly, heuristic-based approaches have often been used to
search through the design and optimization space of simple
uniprocessors [2]. While several of those approaches can
often be applied directly to the design of many-core pro-
cessors, our work is different in that the machine learning-
based techniques presented here are novel. Also, we present
a new framework/tool for multi-core exploration and opti-
mization.

2 Adapting Search Algorithms for Multi-
core Design Space Exploration

Previous work [2] has modeled uniprocessor design as
a search problem. One aspect of Magellan is implementing
some of these search algorithms for multi-core design space
exploration.



Steepest Ascent Hill Climbing

Exploring multi-core design using steepest ascent hill
climbing involves evaluating all combinations of every
neighboring core and using the best k-core combination for
the next iteration. A neighboring core is defined as a core
that differs in only one parameter and that too in the small-
est granularity. For example, two cores that are identical in
all parameters except in their icache sizes where the icache
size of one is 8KB and the other is 16KB are neighboring
cores.

Pseudo-Code

1: S =initial k core configuration E = Evaluation of S MaxIPC =E
2: BestConf =S
3: while not stuck do

4 N = neighbors of S
5 for i to maxnum ; maxnum = number of combinations of N do
6: En = evaluations of N;
7 if En > BestEn; if new N is better than best N so far then
8: BestEn = En
9: BestN = N;
10: end if
11: end for
12: if BestEn > MaxIPC then
13: MaxIPC = Bestn
14: BestConf = N;
15: end if
16: S=N;

17: end while
Genetic Algorithm

Our implementation of genetic algorithm for multi-core
design space exploration involves 4 stages: Reproduce,
Crossover, Mutation, and Natural Selection. Reproduce
stage simply evolves the current processor to next neigh-
bors. Crossover stage cross over the population and come
up with new processors. Mutation stage randomly picks
numbers of cores and mutate them to a random core. Fi-
nally, Natural Selection stage picks 4 top performing pro-
cessors and use them in the next step of exploration.

Pseudo-Code

1: S =initial k core configuration E = Evaluation of S
2: for I=1: Kmax do
3: RPool = Reproduce (S) ; find better neighbor of each k-core set

4:  CPool = CrossOver(ReproducePool) ; crossing over all the popula-
tions
5:  MPool = 4 Randomly mutated k-core of current population

6: S =Top 4 set of k core configurations out of S, Rpool, Cpool,MPool
7: end for L .
Ant Colony Optimization

We adapt ant-colony optimization technique to the multi-
core processor design space exploration problem taking dif-
ferent paths every iteration in our search for the “optimal”
processor (or the ones close to it).

Pseudo-Code

1: S =initial k core configuration E = Evaluation of S MaxIPC = E
2: BestConf = S Path = initial path
3: while not stuck do

4 for i=1: Kmax do

5 N = better neighbor of pathl[i]
6: En = evaluations of N @
7: if En > MaxIPC then
8: MaxIPC=En

9: BestConf = N
10: end if
11: if En != Eprevious then
12: Path[i] = [N, En]
13: end if
14: end for

15: end while

The advantages and disadvantages of these search algo-
rithms are fairly well-known. The reader is referred to
a standard book on optimization techniques for a more
through analysis of the differences between them.

3 Treating Processor Design as a Machine
Learning Problem

Workloads Input

Tag Cores Based Run [npuc
on their eharae- Benchmarks on Tnformation to Tug

Leristics. Select Cores. Benchmarks.

No, Refine Tags.

Tse Warkload

While Simulating,
Validate the Curres
Tags. Valid?

Tfarmation to

Yes, Keep Searching

Compare rags
berween cores and a
combination of
henchmarks for the
k-core processor.

Exclude those map-
® | pings that do nat
have more than k/2
match.

'I:r_v all permuta- ¢
tions.
{mappings)

Figure 1. a) Flowchart of Machine Learning Technique
And (b) the Optimization of Workloads to Cores Mapping

The proposed techniques for machine learning based-
search for finding the best processor involves two phases,
tagging cores and benchmarks while simulating, and
searching. We start out by simulating the benchmarks on
a small number of distinct cores that are picked according
to their characteristics such that they are sufficient to tag all



the benchmarks. The performance and tag values are kept
in arrays. As we begin searching through the solution space,
we set the starting configuration according to the character-
istics of the benchmarks that we have tagged already. Every
iteration of search, we look at the combinations of cores that
fit the benchmarks’ characteristics. As the search proceeds,
we run into cores that have not been seen yet. The perfor-
mance of workloads on these combinations can potentially
be used to further refine the benchmark tagging. In this pa-
per, we consider a simpler approach where the tag of the
benchmarks do not change after the initial simulations (as
discussed above).

To reduce the number of application-to-core mappings
considered for a given combination of k£ cores, we con-
sider simulating only those combination where there are
more than k/2 matches between characteristics of cores and
workloads. Through this exclusion rule, we are able to elim-
inate a large number of permutations thereby significantly
lessening the simulation overhead while still doing a fair
evaluation of every core combination.

Note that we can try SAHC or GA on top of above ap-
proach which will decrease number of instanced considered
even more.

Tagging Cores and Benchmarks

We examined two techniques for tagging the cores in the
library and the set of benchmarks used to evaluate each core.
The first technique is based on core complexity while the

second one involves tagging based on core parameters.
Following subsections will examine the methodologies.

1-tuple Tagging: Tagging Based on Complexity

This technique uses the notion of complexity (or compli-
catedness) of the cores and the benchmarks to tag them
(tagging benchmarks is based on the notion of sensitivity to
complexity of cores). The tag is a 1-tuple with values - Sim-
ple, Moderate, and Complicated.For cores, tags are rather
intuitive. A core gets the tag Simple if it is relatively sim-
ple and small in terms of its various parameters. A core is
assigned the tag Complex when it is relatively complex and
big in terms of its parameters. The cores that not clearly

Simple or Complex are marked as Moderate.
Benchmarks are tagged according to their performance

on our library of cores. A few clearly Simple, Moderate,
and Complex cores are picked and each benchmark is run
on them. A benchmark that has more or less same perfor-
mance (defined by a threshold) on a Simple core is tagged
as Simple. If the performance difference is large, the bench-
mark is tagged Complex. If it is neither, the benchmark is
tagged as Moderate.

The advantage of tagging according to complexity is
that we can ignore details regarding the processor param-
eters and be able to categorize cores and benchmarks into

somewhat simplistic categories. For example, it lets us put
any type of core or benchmark into three categories which
makes the machine learning-based search fairly simple in
terms of matching. The limitation is that it lacks the de-
tails leading to inefficiency. For example, if a benchmark
performs well on all cores that have high fetch width, the
machine learning-based search will pick up the cores where
not only fetch width is high but other parameters might be
complicated as well.

k-tuple Tagging: Tagging Based on Parameters

Another technique that we examined is to tag cores accord-
ing to their parameters. We categorized cores into 5 cate-
gories: Simple, D-cache intensive, [-Cache intensive, Exe-
cution units intensive, and Fetch Width intensive. Each tag,
therefore, is a 5-tuple where each tuple is one of the fields.
Multiple fields can be set at the same time. For example, a
core with a large DCache and a large ICache is tagged as
(0,1,1,0,0).

Benchmarks are tagged according to their improvements
in performance when one of those parameters on a core run-
ning the benchmark became complex. For example, Ad-
pcmc is execution unit intensive and also fetch width inten-
sive, and is tagged as (0,0,0,1,1).

Note that a more effective tagging technique would be al-
lowing each field in the tag to take parameter values instead
of binary values. However, conceptually it is equivalent to
the above technique with a larger number of fields per tuple.

The advantage of tagging cores according to parameters
is that a lot of attention is paid to the specific parameter(s)
that effect(s) the performance of a benchmark. For example,
if a benchmark performs well only when the core on which
it is being run has a high I-Cache size AND a large number
of execution units, the machine learning-based search will
be able to pick the right core just for such a benchmark.

A disadvantage of k-tuple tagging is that the search and
matching becomes slightly more complex as multiple tags
are allowed. In this paper, we declare a match when the
characteristics of benchmarks are covered by the core’s
characteristics.

4 Magellan Framework

Figure 2 shows the overall structure of Magellan, a
framework for multi-core design space exploration and op-
timization that we have developed, and the interface be-
tween the optimization techniques and the performance
simulator. The optimization techniques refer to the search
and machine learning techniques discussed in previous sec-
tions.

The inputs to Magellan are area, power, time constraints.
A time constraint refers to the amount of exploration time
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Figure 2. Overall structure of Magellan

that the designer is willing to expend. Magellan also re-
ceives as input a set of applications that the designer would
want the processor to run effectively on. The output of Mag-
ellan is the hardware configuration of a processor optimized
according to some objective function and the performance,
area, and power characteristics of it.

Magellan can either be used as an automated tool multi-
core processor design exploration or it can be used as an aid
to the experienced designer.

One fundamental limitation of Magellan is that it does
not provide guaranteed minimum performance, not even
probabilistically. Another limitation of the Magellan
framework is that it currently takes as input only multipro-
grammed workloads, not parallel workloads. However, this
limitation is not fundamental and is due to the fact that it is
not clear to the authors what is the best strategy for running
parallel programs on heterogeneous architectures. Magel-
lan also currently does not account for form factors and as-
pect ratios of the cores as well as the floorplanning issues,
etc. when picking cores for a particular area budget.

5 Methodology

We make several simplifying assumptions to reduce the
number of simulations we had to do for the paper. First,
we assume that the performance of individual cores is sep-
arable, that is, that the performance of a four-core design,
running four applications, is the sum (or the sum divided
by a constant factor) of the individual cores running those
applications in isolation. Second, we assume good static
scheduling of threads to cores. Thus, the performance of
four particular threads on four particular cores is the per-
formance of the best static mapping.  We also consider
only major blocks to be configurable, and only consider dis-
crete points. For example, we consider 4 cache configura-
tions (per cache) (rather than all the intermediate values).
But we consider only a single branch predictor, because the
area/performance tradeoffs of different sizes had little effect
in our experiments.

Modeling of CPU Cores

For all our studies in this paper, we model k-core mul-
tiprocessors (for k=4,6, and 8) assumed to be implemented
in 0.10 micron, 1.2V technology. Each core on a multipro-
cessor, either homogeneous or heterogeneous, has a private
L2 cache and each L2 bank has a corresponding memory
controller. We base our processor microarchitecture model
on the Alpha EV5 (21164). We evaluate 96 cores as pos-
sible building blocks for constructing the multiprocessors.
This represents all possible distinct cores that can be con-
structed by changing the parameters listed in Table 1. The
various values that were considered are listed in the table
as well.  Other parameters that are kept fixed for all the
cores are also listed in Table 1. The various miss penalties
and L2 cache access latencies for the simulated cores were
determined using CACTI [6]. All evaluations are done for
multiprocessors satisfying a given aggregate area and power
budget for the k cores. We do not concern ourselves with
the area and power consumption of anything other than the
cores for this study.

To model the peak activity power and area consumption
of each of the key structures in a processor core using a
variety of techniques, we use a methodology identical to [4].
The cores represent a significant range in terms of power
(4.72-12.98W) as well as area (3.45-14.38mm?2).

Modeling Performance

All our evaluations are done for multiprogrammed work-
loads. We used twelve benchmarks used for construct-
ing workloads. These benchmarks are randomly chosen
from the SPEC2000 suite (ammp, bzip, crafty, eon, mcf,
twolf, mgrid, mesa) as well as benchmarks from Olden
(deltablue), 1BS (groff, gs), and Mediabench (adpcmc)
suites to ensure diversity. Every multiprocessor is evalu-
ated on two classes of workloads. The all different class
consists of all possible k-threaded combinations that can
be constructed such that each of the k threads running at
a time is different. The all same consists of all possible k-
threaded combinations that can be constructed such that all

the k threads running at a time are the same.
We find the single thread performance of each applica-

tion on each core by simulating for 250 million cycles, af-
ter fast-forwarding non-representative instructions [1]. This
represents 1152 simulations. Simulations use a modified
version of SMTSIM [7]. Scripts are used to calculate
the performance of the multiprocessors using these single-
thread performance numbers.

6 Analysis and Results

In the following sections, we examine the effective-
ness of the proposed machine learning-based techniques



Issue-width 1,2,4
I-Cache 8KB-DM, 16KB-2way, 32KB-4way, 64KB-4way L2 Cache IMB/core, 4-way, 12cycle access
D-Cache 8KB-DM, 16KB-2way, 32KB-4way, 64KB-4way dual ported | Memory Channel | 533MHz, doubly-pumped, RDRAM
FP-IntMul-ALU units. 1-1-2,2-2-4 ITLB-DTLB 64, 28 entries

Table 1. Various Parameters and their possible values for configuration of the cores.

by comparing them against adapted exhaustive and intel-
ligent search/optimization techniques. treating We also re-
visit quantitatively the various usage models for Magellan.

Treating Processor Design as a Search and a Ma-
chine Learning Problem
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Figure 3. Throughput of the best 4-core multiproces-
sor discovered by the various techniques, and the time
elapsed for each design space exploration. The results
are for all-different workloads for an area budget of 45
mm? and a power budget of 60W. Single Asterisk in-
dicates 1-tuple tagging and double asterisks indicate k-
tuple tagging.

Figure 3 show the results in finding the best 4-core pro-
cessor with our techniques compared against the Exhaustive
Search, the Best Homogeneous, and the Best Random pro-
cessor. Best Homogeneous is an exhaustive search over only
homogeneous multi-core architectures. Best Homogeneous
for four cores, for example, considers 96 different multi-
core architectures (each corresponding to a different core
type). Random Best corresponds to a randomly chosen mul-
tiprocessor that just satisfies the area and power constraint.
Note that such a multiprocessor utilizes the available area
and power well and hence would perform significantly bet-
ter than a purely randomly chosen four-core chip multipro-
CEessOr.

The results show that the adapted search techniques
as well as the proposed ML techniques perform exceed-
ingly well. While exhaustive search indeed comes up
with the highest performing chip multiprocessor, intelligent
search/ML techniques discover processors that are within

0.1 percent of the “optimal” processor in terms of perfor-
mance. In terms of the time taken for design space ex-
ploration, these search/ML techniques have orders of mag-
nitude less overhead. Hill Climbing, for example, is over
168000 times faster than exhaustive search. Similarly, ML
Exhaustive is 1600 times faster than exhaustive search. Ge-
netic Algorithm emerges as the best search policy and per-
forms within 0.1% of exhaustive search while being almost
23000 times faster. In fact, all the search/ML techniques
are at least 3800 times faster than exhaustive search and
perform no worse than 1% in terms of performance! To
put these results into perspective, Random Best performs no
better than 23% of the exhaustive search in spite of utilizing
the area/power budget well.

The benefits of the proposed techniques become much
more pronounced as the design space increases. Figure 4
shows the results. As we can see, the overhead of exhaustive
search increases exponentially as number of cores increase.
The overhead of our techniques, on the other hand, increase
only superlinearly in the worst case, and only linearly in the
best case. An interesting result also that ML when applied
to intelligent search techniques, results in processors with
comparable performance, but can often take significantly
less time for exploration. For example, ML when applied to
Steepest-Ascent Hill Climbing is over 81 times faster than
the baseline Steepest-Ascent Hill Climbing.

As technology leads to increasing number of cores on the
die and increasing number of parameters, exhaustive search
may become impossible, and using one of the intelligent
techniques may arguably the only way to do design space
exploration.
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Figure 5. Tradeoffs for 6-core exploration for different
fixed time budgets for an area budget of 80 mm? and a
power budget of 70W

We studied two usage scenarios to demonstrate quan-
titatively the effectiveness of Magellan. First, we studied
the effectiveness of using Magellan in terms of finding the
highest performing 4-core processor in a fixed time budget.
This may represent the case where a designer does not want
to expend more than a certain amount of time to processor
design space exploration. Figure 5 shows the results for
all different. As expected, while some techniques evolve
slowly towards a better processor (e.g., exhaustive, SAHC,
etc.) due to unavoidable evaluation of bad/redundant pro-
cessors, other techniques (e.g., ACO, HSHC, etc.) evolve
faster as they try different starting points. Genetic Algo-
rithm jumps to a high IPC the quickest as one of population
might be already in a range of the “optimal” solution.

Figure 6 shows the results for the second usage scenario
where our techniques are applied for multi-core optimiza-
tion — core/L2 co-design, specifically. The goal is to again
come with the highest performing 4-core chip multiproces-
sor, except that even L2 cache size is parametrized. Il.e.,
the L2 cache can now be 512KB, 1MB, or 2MB, and de-
pending on the size of the L2, other core resources may be
constrained. As the graph shows, the search/ML techniques
continue to perform significantly better than an exhaustive
search.

7 Summary and Conclusions

We develop Magellan, a framework for doing fast and
efficient multi-core design space exploration and optimiza-
tion, that uses several well-known (and some less known)
search /optimization techniques and two novel ML-based
techniques to look through the multi-core processor design
space. The intelligent search/ML techniques are at least
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Figure 6. Throughput/time tradeoffs for various tech-
niques for 4-core processor with L2 Cache Parametrized
on budget of an area budget of 45 mm? and a power
budget of 60W.

3800 times faster than exhaustive search and perform no
worse than 1% in terms of performance! The proposed
ML techniques perform up to 13% better than the adapted
search techniques. These techniques also scale well with the
number of cores while the overhead of exhaustive search in-
creases exponentially. Magellan can be used either as an au-
tomated tool for exploration/optimization or it can be used
to aid processor designers that prefer to rely on intuition by
allowing fast refinements to an input design.
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