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ABSTRACT
Stochastic computation, as presented in this paper, exploits
the statistical nature of application-level performance met-
rics, and matches it to the statistical attributes of the un-
derlying device and circuit fabrics. Nanoscale circuit fab-
rics are viewed as noisy communication channels/networks.
Communications-inspired design techniques based on esti-
mation and detection theory are proposed. Stochastic com-
putation advocates an explicit characterization and exploita-
tion of error statistics at the architectural and system levels.
This paper traces the roots of stochastic computing from the
Von Neumann era into its current form. Design and CAD
challenges are described.

1. INTRODUCTION
1

Stochastic computation is presented as an elegant approach
for the design of robust and energy-efficient systems-on-a-
chip (SOC) in nanoscale process technologies. Moore’s Law,
the driving force behind the global semiconductor indus-
try for the last 50 years, is under threat today from arti-
facts of nanoscale dimensions. Process, voltage and tem-
perature (PVT) variations, leakage, soft errors, and noise
in sub-45nm process technologies [1] are conspiring to make
it difficult to reap the benefits of feature size scaling due
to reliability concerns. A parallel trend is the growing func-
tional complexity and power of next generation applications.
The result is a power and reliability problem in nanoscale
systems-on-a-chip (SOCs). Reliability and power are inter-
linked problems viewed by the semiconductor industry as
the key inhibiters of Moore’s Law. Not surprisingly, since
2001, the International Technology Roadmap for Semicon-
ductors (ITRS) [2] has stated the achievement of reliability
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Figure 1: Stochastic computation: (a) framework,
and (b) impact on SOC design methodology.

and energy-efficiency as two of the important challenges fac-
ing the semiconductor industry.

Stochastic computation, as presented in this paper (see
Fig. 1(a)), exploits the statistical nature of application-level
performance metrics of emerging applications, and matches
it to the statistical attributes of the underlying device and
circuit fabrics. It is fortuitous that a large class of next
generation of applications can be categorized into recogni-
tion, mining and synthesis (RMS), where massive amounts
of potentially media-intensive data needs to be processed
in order extract, exploit and operate with models. Such
model/knowledge-based applications are driven by modern
day societal needs in security, health and energy [3]. RMS
applications, especially those in media-rich immersive com-
puting, exhibit statistical performance metrics. For exam-
ple, signal-to-noise ratio (SNR) in video compression, bit
error-rate (BER) in data communications, probability of de-
tection in face/target recognition, and many others. Stochas-
tic computing relies on exploiting the somewhat relaxed def-
inition of “correctness” afforded by such applications. Natu-
rally, there will always be a small class of critical applications
such as those in finance/banking, flight control systems, and
others where a precise definition of correctness is mandatory,
and where stochastic computing may not be applicable in its
current form. Stochastic computing views nanoscale circuit
fabrics as noisy communication channels and networks (see
Fig. 1(a)), and incorporates statistical behavioral models of
the circuit fabric, to develop communications-inspired de-
sign techniques based on the well-established foundations of
statistical estimation and detection [4]. Specifically, stochas-



tic computation advocates an explicit characterization and
exploitation of error statistics due to nanoscale artifacts, as
seen at the architectural/algorithmic/system levels. The
benefits of such a design philosophy are the tremendous
gains in robustness and energy-efficiency in presence of a
extremely high-degree of unreliability (e.g., error-rates of
20%) at the circuit fabric. For example, orders-of-magnitude
enhancement in system reliability has already been demon-
strated for filtering [5], motion-estimation [6], Viterbi decod-
ing [7], and CDMA pseudo-noise (PN) acquisition kernels
[8], among others, along with 30%-to-60% energy-savings.

It is interesting to note that modern day SOC design
methodology (see Fig. 1(b)) does indeed employ statisti-
cal analysis and design techniques at the highest (system
level), and at the lowest (device modeling and characteriza-
tion) levels. However, CAD algorithms and tools, with the
exception of statistical static timing analysis (SSTA), are
primarily based on deterministic foundations. The design
of stochastic computing systems will require migration from
a deterministic to a statistical basis for much of the design
flow, and therefore represents a major shift in focus for the
CAD community. This paper traces the roots of stochastic
computing from the Von Neumann era to its current form,
describing the potential gains in performance and power in
the presence of device and circuit non-idealities. Design and
CAD challenges resident in the design of stochastic comput-
ing systems are also described.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe relevant past work in the area of systems,
architecture and logic design. Section 3 describes algorith-
mic noise-tolerance (ANT), which lays the foundations of
stochastic computations as defined in this paper, followed by
a networked/distributed version of ANT referred to as the
stochastic sensor NOC (SSNOC). Finally, Section 5 presents
stochastic computation in its current manifestation where
error statistics are explicitly captured and processed. The
paper ends with a discussion on some of the CAD challenges
in the design of stochastic computing systems.

2. RELEVANT WORK
Von Neumann [9] was the first to address the problem of

reliable computation in presence of unreliable components.
Specifically, [9] showed that reliable automata/networks, i.e.,
networks with a probability of output error Pe,sys < 0.5 can
be designed using a cascade of three-input majority gates, if
the component probability of failure pe ≤ 0.0073, and that
reliable computation is impossible if pe ≥ 1/6. Von Neu-
mann also proposed a construction in which each Boolean
variable x is represented by bundle of N lines carrying bi-
nary values such that the ratio of “1”-to-“0” wires repre-
sents Pr(x = 1) = px. Employing triplication of logic, it
was shown that Pe,sys < pe is achievable. However, the
overhead of this construction is enormous, e.g., to obtain
Pe,sys = 0.5pe when pe = 0.005 requires a replication factor
of N = 2000. A number of later works followed up on [9]
especially in relation to the bounds on pe. Pippenger [10]
and Feder [11] showed that if pe ≥ 0.5 − 0.5k, it is im-
possible to construct reliable networks using k-input gates.
Evans [12] tightened the bound to pe ≥ 0.5 − 0.5

√
(k) and

Hajek [13] showed that it is possible to construct reliable
networks using 3-input noisy gates if pe ≤ 1

6
. These results

are pessimistic in many respects: 1) they show that intrinsic
network reliability (without redundancy) is worse than com-

Main Block

Estimator

|  | >THx

η+= oa yy

eyy oe +=

ŷ
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Figure 2: Algorithmic noise-tolerance (ANT): (a)
framework, and (b) error distributions.

ponent reliability, i.e., Pe,sys > pe, 2) enormous complexity
overhead via redundancy is required if Pe,sys < pe, 3) the
noisy gate model, i.e., individual gates independently mak-
ing errors does not match reality, where errors occur when
erroneous values are latched at a clock edge.

Other related work includes a statistical analysis of neu-
ral computation [14], where the classification property of a
feedforward neural network is analyzed in an information-
theoretic sense. The work in [14] does not embody any
notion of computational errors. In [15], Markov random
networks are employed to design robust logic. This imple-
mentation though quite robust to continuous-time voltage
noise, has a large overhead in terms of transistor count.
In [16], stochastic logic is proposed whereby Von Neumann’s
N -wire bundle representation of Boolean variables is em-
ployed, though it is assumed that that the logic is error-free,
i.e., deterministic logic operating on stochastic signals.

N-modular redundancy (NMR) [17] is a commonly em-
ployed fault-tolerance technique where computation is repli-
cated in N processing elements (PEs), and the outputs are
majority voted upon. NMR’s N× complexity and power
overhead restricts its applicability to cost-insensitive criti-
cal applications, e.g., in the military, medical and high-end
servers. Similarly, techniques such as checkpointing [18], and
coding techniques [19] have been proposed, each of which
though effective in enhancing robustness incur a significant
energy-cost. Recently, RAZOR [20] focuses on error com-
pensation at the logic and microarchitectural levels by em-
ploying shadow latches to detect timing errors.

Though each of the works described above is remarkable
in its intent, they miss out on the opportunities available
in tying application-level requirements to computation. In-
deed, Von Neumann [9] was not satisfied with his results [21],
and pointed out that errors in computation need to be ad-
dressed in a manner similar to how information transfer was
addressed by Shannon by employing a statistical description
of information. Stochastic computation, as presented in this
paper, does exactly that.

3. STOCHASTIC COMPUTATION WITH AL-
GORITHMIC NOISE-TOLERANCE (ANT)

Algorithmic noise-tolerance [5] in Fig. 2(a) incorporates
a main block and an estimator. The main block is permit-
ted to make errors, but not the estimator. The estimator
is a low-complexity (typically 5%-to-20% of the main block
complexity) computational block generating a statistical es-



timate of the correct main PE output, i.e.,

ya = yo + η (1)

ye = yo + e (2)

where ya is the actual main block output, yo is the error-
free main block output, η is the hardware error, ye is the
estimator output, and e is the estimation error. Note: the
estimator has estimation error e because it is simpler than
the main block. ANT exploits the difference in the statistics
of η and e as shown in Fig. 2(b). To enhance robustness,
it is necessary that when η 6= 0, that η be large compared
to e. In addition, the probability of the event η 6= 0, i.e.,
the component probability of error pe of the main block, be
small. The final/corrected output of an ANT-based system
ŷ is obtained via the following decision rule:

ŷ =

{
ya, if |ya − ye| < τ

ye, otherwise
(3)

where τ is an application dependent parameter chosen to
maximize the performance of ANT. Under the conditions
outlined above, it is possible to show that

SNRuc � SNRe � SNRANT ≈ SNRo (4)

where SNRuc, SNRe, SNRANT and SNRo are the SNRs of
the uncorrected main block (η dominates), the estimator (e
dominates), the ANT system, and the error-free main block
(ideal), respectively. Thus, ANT detects and corrects errors
approximately, but does so in a manner that satisfies an
application-level performance specification (SNR or BER).
It employs estimation, by constructing an efficient estimator,
and detection, by formulating the decision rule (3) derived
from detection theory.

For ANT to also provide energy-efficiency, it is necessary
that the errors in the main block are primarily due to en-
hancement of its energy-efficiency. In practice, these proper-
ties are easily satisfied when errors in the main block occur
to voltage overscaling (VOS) [5], or a nominal case design
being subjected to a worse case process corner (better than
worst-case design (BTWC)). In VOS, the supply voltage is
scaled below the critical voltage Vdd,crit needed for error-
free operation. As most computations are least significant
bit (LSB) first, timing violations due to VOS or BTWC are
generally large magnitude most significant bit (MSB) errors.
Thus, timing violations satisfy the error distribution shown
in Fig. 2(b).

A number of ANT techniques have been proposed in the
past [5,22,23] for finite-impulse response (FIR) filters. ANT
has been shown to achieve up to 3× energy savings in theory
and in practice via prototype IC design [24] for finite impulse
response (FIR) filters. ANT has also been employed in the
design of error-resilient low-power motion estimators [6] and
Viterbi decoders [7] (800× improvement in BER with 3×
improvement in energy savings).

4. STOCHASTIC SENSOR NETWORK-ON-
A-CHIP (SSNOC)

SSNOC [8] relies only on multiple estimators or sensors to
compute, permitting hardware errors to occur (see Fig. 3),
and then fusing their outputs to generate the final corrected
output ŷ. Thus, the output of the ith sensor is given as

yei = yo + ei + ηi (5)
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Figure 3: The stochastic sensor network-on-a-chip
(SSNOC).

where ηi and ei are the hardware and estimation errors in
the ith estimator, respectively.

If hardware errors are due to timing violations, one can
approximate the error term in (5) as (1−pe)ei +peηi, where
pe is the probability of ηi 6= 0, i.e., the component proba-
bility of error. Such an ε-contaminated model lends itself
readily to the application of robust statistics [25] for er-
ror compensation. SSNOC has been applied to a CDMA
PN-code acquisition system [8], where the sensors were ob-
tained through polyphase decomposition of the matched fil-
ter. Simulations indicate an 800× improvement in detection
probability while achieving up to 40% power savings. A key
drawback of SSNOC is the feasibility of decomposing com-
putation into several sensors whose outputs are statistically
similar, i.e., its generality. SSNOC has been applied to a
CDMA PN-code acquisition system, where the sensors were
obtained through polyphase decomposition.

5. STOCHASTIC COMPUTATION WITH ER-
ROR STATISTICS

ANT and SSNOC rely on certain properties of the dis-
tribution of hardware errors η and the estimation error e.
For ANT, the distributions of η and e should be sufficiently
distinct, and for SSNOC, the composite error distribution
should be ε-contaminated. ANT and SSNOC both have
been shown to be powerful in enhancing robustness while
providing significant energy-savings. In this section, we show
that even more powerful versions of stochastic computation
can be developed if error statistics are explicitly employed
in computation.

We first provide an example of an error distribution. The
timing error distribution at the output of a 8×8, 8-bit input,
14-bit output, 2-D DCT block using Chen’s algorithm [26],
with mirror adders and array multipliers [27] as fundamental
building blocks, implemented in a commercial 45 nm, 1.2 V
CMOS process, is shown in Fig. 4 for two different voltages.
In Fig. 4, one observes that the error PMFs become more
spiky as the supply voltage decreases, and that a few large
amplitude errors have a high probability of occurrence. This
is to be expected as the DCT architecture is LSB-first and
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Figure 4: Error statistics of a voltage overscaled
DCT block in a 45 nm, 1.2 V CMOS process with
Vdd,crit = 1.2 V: (a) Vdd = 1 V (probability of error is
0.0374), and (b) Vdd = 0.8 V (probability of error is
0.7142).
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Figure 5: Block diagram of: (a) NMR, and (b) soft
NMR.

hence timing errors will appear in the MSBs, i.e., large am-
plitude error will occur. The latest generation of stochastic
computation employ the error PMFs such as those in Fig. 4
to enhance robustness. Two approaches are described: 1)
soft NMR, and 2) soft-input soft-output (SISO) computa-
tion.

5.1 Soft NMR
Soft NMR incorporates communication-inspired techniques

into NMR in order to improve its effectiveness, while pre-
serving its generality. Structurally, soft NMR differs from
NMR in that it incorporates a soft voter, which is com-
posed of a detector. Soft NMR makes explicit use of two
types of statistical information: (1) data statistics, and (2)
error statistics. Data statistics are the distribution of the
error-free PE output. This is referred to as the prior dis-
tribution, or prior. Error statistics are the distribution of
the errors at the PE output. Note: the prior depends only
upon input data statistics and the input-output mapping of
the computation. The error distribution depends upon in-
put data statistics, the functionality, the PE architecture,
circuit style, and other implementation parameters. The
role of the soft voter in Fig. 5(b) is to determine the out-
put ŷ that would, on average, optimize a pre-specified per-
formance metric. The well-established detection theory [4]
can be employed in order to systematically derive the soft
voting algorithm. The detector maps the PE observations
y1, y2, . . . , yN to the “closest” hypothesis. Thus, the detec-
tion problem requires the definition of a hypothesis set H,
from which the corrected output ŷ is selected. This is done
by solving the following:

ŷ = arg max
Hi∈H

P (y1, y2, ..., yN |Hi), (6)

where H = {Hi}mi=1 the set of all hypotheses.

As the arg max operation needs to perform a search over all
possible hypotheses, for practical implementations, the hy-
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Figure 6: Simulation results: (a) Pe,sys for an 8-bit
multiplier, and (b) PSNR vs. pe for DCT.

pothesis spaceH needs to be limited. There are several ways
to limit H. The simplest being to choose H = y1, y2, . . . , yN .

Soft NMR error model is given by

yi = yo + ηi (7)

where we see that there is no estimation error e in either
NMR or soft NMR.

Figure 6(a) shows the results for an 8-bit multiplier where
the error statistics are those of a 16-bit RCA with timing
errors. Overall, reduction in Pe,sys of 10× over NMR can be
achieved by soft NMR. Figure 6(b) shows the results for an
8 × 8 DCT whose error statistics are shown in Fig. 4. Soft
NMR provides between 2×-to-10× improvement in robust-
ness along with 13%-to-35% savings in power (not shown)
over NMR [28].

5.2 Soft-input Soft-output (SISO) Computa-
tion

One can employ error statistics to generate soft informa-
tion λj for an output bit bj ,

λj = ln
p (bj = 1)

p (bj = 0)
(8)

where −∞ ≤ λj ≤ ∞, also called the log-likelihood ratio
(LLR), represents the reliability (or confidence) one has in
the value of whether bj = 1 or bj = 0. The use of soft
information in the form of LLR is well-established in the
design of modern day communication systems. Such systems
incorporate forward error-control (FEC) decoders such as
the soft Viterbi decoder, the turbo decoder and the low-
density parity check (LDPC) decoder, which compute soft
information in order to correct for channel errors. Thus, soft
information can be exploited to enhance the robustness of
computational kernels in nanoscale process technologies.

Consider a processing element (PE) B whose 2-bit output
y = (b1, b2) is

y = yo + η (9)

where yo is the correct output and η is the error. For exam-
ple, if y = (1, 1) and yo = (0, 1) then η = (1, 0), i.e., 2. In
general, y, yo, and η ∈ V, where V = {(0, 0), (0, 1), (1, 0), (1, 1)}
is the output space.

Assume that block B’s error statistics are available in the
form of a probability mass function (PMF) f(η), e.g., as
shown in Fig. 7(a). Next, consider an N = 3 system employ-
ing three identical PEs, Bi (i = 1, 2, 3), as shown in Fig. 7(c).
Without any loss of generality, we assume that the PE errors



Figure 7: A motivational example: (a) a 2-bit sam-
ple error probability mass function f(η), (b) map-
ping from probability to reliability measure, and (c)
the N = 3 SISO processor.

ei are indeed spatially independent, and have the PMF f(η)
in Fig. 7(a), i.e., f1(η1) = f2(η2) = f3(η3) = f(η). Now, if
y1 = (1, 0), y2 = (1, 0), and y3 = (1, 1), then TMR selects
ŷ = (1, 0) irrespective of the error statistics. On the other
hand, a smart voter with the knowledge of error statistics
would realize that the correct output yo 6= (1, 0) since in
that case η3 = y3 − yo = (0, 1) but f3(η3 = (1, 0)) = 0 (see
Fig. 7(a) at e = 1).

Suppose we wish to exploit error statistics by computing
the bit-level LLR as defined in (8). The resulting processor,
in the context of NMR, is referred to as SISO-NMR (see
Fig. 7(c)). In SISO-NMR, the LLR of bit bj is given by the
a-posteriori probability ratio (APR):

λj = ln
p(bj = 1|Y)

p(bj = 0|Y)
= ln

p(bj = 1|Y)

1− p(bj = 1|Y)
(10)

where Y is the observation space and is equal to {y1, y2, y3}
in Figure 7(c). Figure 7(b) plots λj as a function of p(bj =
1|Y). Note: large positive (negative) values of λj implies
that bit bj is highly likely to be a 1 (0), i.e., large magnitude
λj implies greater confidence in the value of bj . In addition,

a hard decision on bj is made by assigning b̂j = sgn(λj), i.e.,

b̂j = 1 if λj ≥ 0 and b̂j = 0 if λj < 0 (see Fig. 7(c)).
Given Y = {y1 = (1, 0), y2 = (1, 0), y3 = (1, 1)}, the error

PMF f(η) in Fig. 7(a), and assuming pe = 0.2, one can
show from (10) that λ1 = 3.79, which is greater than zero,

and thus b̂1 = 1. Similarly, one can show that λ2 = 3.79
and b̂2 = 1, and thus SISO-NMR generates the output ŷ =
(1, 1). It is interesting to note that SISO-NMR can generate
a correct output even when all observations yi are incorrect.
This is something NMR cannot achieve. The use of soft
information for robust computation opens up the possibility
of devising architectures where LLRs are exchanged between
two statistically similar blocks much like a turbo decoder in
order to enhance reliability. Study of such SISO and turbo-
architectures is currently an on-going topic of study.

5.3 Stochastic Processors
Stochastic computing ideas described in the previous sec-

tions have a clear path from system design to a dedicated
ASIC implementation. One can implement stochastic ac-
celerator cores in present day technologies. One can also
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Figure 8: Stochastic processors: (a) stochastic
SOC/soft processor [29], and (b) error-resilient sys-
tem architecture (ERSA) [30].

conceive of a programmable platform, i.e., stochastic pro-
cessors, where the principles of stochastic computing are
employed. Figure 8(a) depicts Variation-Adaptive Stochas-
tic Computer Organization (VASCO) [29] that can dynam-
ically adapt to workload characteristics and environmental
conditions to maximize energy/performance benefits from
hardware stochasticity. VASCO is based on a tiled, adapt-
able, multi-core architecture consisting of an adaptable pro-
grammable core with reliable control and a stochastic dat-
apath, timing speculative memory, a stochastic accelerator,
and sensors to monitor environmental conditions. Soft pro-
cessors opens up the possibility of incorporating error-rate
as a metric in microarchitecture design.

Another recent approach is the Error Resilient System Ar-
chitecture (ERSA) [30], a low-cost robust system architec-
ture RMS applications. ERSA achieves high error resilience
to high-order bit errors and control errors (in addition to
low-order bit errors) using a judicious combination of 3 key
ideas: (1) asymmetric reliability in many-core architectures,
(2) error-resilient algorithms at the core of probabilistic ap-
plications, and (3) intelligent software optimizations. Error
injection experiments on a multi-core hardware prototype
demonstrate that ERSA maintains 90% or better accuracy
of output results, together with minimal impact on execu-
tion time. Soft processors and ERSA both embody the no-
tion that reliable systems can be designed with unreliable
components, but that application requirements need to be
brought into the design process.

6. CAD CHALLENGES
Design of stochastic computing systems presents a number

of CAD challenges in all aspects of the design methodology.
Some of these are:

1. Engineering Error-Statistics: Develop macro-level
design and synthesis techniques that result in: a) a
graceful increase in error-rates, b) a desired error PMF
or error rate [31], c) and uncorrelated and/or indepen-
dent errors.

2. System/Architectural Level Error Modeling: De-
velop efficient CAD techniques for obtaining error PMFs
from transistor-level models, and being able to com-
pose the error PMFs of larger blocks until architectural-
level models are available.

3. Verification and Test of Stochastic Computing
Systems: Define appropriate verification and test met-



rics for reliable systems designed using unreliable com-
ponents.

4. Compilation/mapping onto Stochastic Proces-
sors: Develop techniques to efficiently map applica-
tions on to programmable stochastic processors.

As semiconductor technology marches into the deep nanoscale
regime, it is inevitable that stochasticity of the device and
circuit fabric will need to be grappled with by both the
design and CAD communities. This paper has described
stochastic computation as an elegant SOC design philos-
ophy for the design of reliable and energy-efficient SOCs.
Hampering the design and deployment of such systems is a
lack of appropriate CAD support. We hope that the CAD
community will take up this challenge so that the semicon-
ductor industry can continue to reap the benefits of Moore’s
law for many years to come.
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