
In Proceedings of the 37th International Symposium on Microarchitecture, December, 2004

Conjoined-core Chip Multiprocessing

Rakesh Kumar�, Norman P. Jouppi�, Dean M. Tullsen�

�Department of Computer Science and Engineering �HP Labs
University of California, San Diego 1501 Page Mill Road

La Jolla, CA 92093-0114 Palo Alto, CA 94304

Abstract

Chip Multiprocessors (CMP) and Simultaneous Multi-
threading (SMT) are two approaches that have been proposed
to increase processor efficiency. We believe these two ap-
proaches are two extremes of a viable spectrum. Between
these two extremes, there exists a range of possible architec-
tures, sharing varying degrees of hardware between proces-
sors or threads.

This paper proposes conjoined-core chip multiprocessing
– topologically feasible resource sharing between adjacent
cores of a chip multiprocessor to reduce die area with mini-
mal impact on performance and hence improving the overall
computational efficiency. It investigates the possible shar-
ing of floating-point units, crossbar ports, instruction caches,
and data caches and details the area savings that each kind
of sharing entails. It also shows that the negative impact on
performance due to sharing is significantly less than the ben-
efits of reduced area. Several novel techniques for intelligent
sharing of the hardware resources to minimize performance
degradation are presented.

1 Introduction
As the number of transistors available on a die has been

increasing according to Moore’s Law, the efficiency of their
utilization in mainstream processor architectures has been de-
creasing. At some point, given increased transistor counts,
increases in processor performance will saturate. This ex-
pectation has stimulated much research in multiprocessor ar-
chitectures, including single-chip multiprocessors [7] (CMP).
Another way to improve the efficiency of large out-of-order
processors is to run more than one thread on each processor
with multithreading, for example simultaneous multithread-
ing [15] (SMT).

We believe these two approaches to increased efficiency
(CMP and SMT) are actually two extremes of a viable spec-
trum. Most CMP approaches use relatively simple proces-
sors [3], which have higher inherent efficiency. SMT pro-
cessors are usually larger and more complex, resulting in
lower single-threaded efficiency, but share almost all pro-
cessor resources between threads to increase efficiency. Be-
tween these two extremes, it is possible to imagine a range

of processors sharing varying degrees of hardware between
threads. At the end of the range closest to CMPs, pairs
of modestly more complex processors could be designed to
share a few common components. At the end of the range
closest to SMTs, processors could be designed that possess
private copies of particular critical resources.

So while the endpoints (CMP and SMT) of this design
continuum have been studied extensively, we assert that it
is important to study the middle ranges of this spectrum as
well, based on two premises. First, that it is unlikely that
either extreme represents the optimal design point over the
entire range. Second, that the performance costs of targeted
sharing of particular resources can be minimized through the
application of intelligent, complexity-effective sharing mech-
anisms. Thus, the selection of the optimal design point cannot
be identified without understanding these optimizations.

There are several benefits to sharing hardware between
more than one processor or thread. Time-sharing a lightly-
utilized resource saves area, increases efficiency, and reduces
leakage. Dynamically sharing a large resource can also yield
better performance than having distributed small private re-
sources, statically partitioned [15, 6].

Topology is a significant factor in determining what re-
sources are feasible to share and what the area, complexity,
and performance costs of sharing are. For example, in the
case of sharing entire floating-point units (FPUs), since pro-
cessor floorplans often have the FPU on one side and the in-
teger datapath on the other side, by mirroring adjacent pro-
cessors FPU sharing could present minimal disruption to the
floorplan. For the design of a resource-sharing core, the floor-
plan must be co-designed with the architecture, otherwise the
architecture may specify sharings that are not physically pos-
sible or have high communication costs. In general, resources
to be shared should be large enough that the additional wiring
needed to share them does not outweigh the area benefits ob-
tained by sharing.

With these factors in mind we have investigated the pos-
sible sharing of FPUs, crossbar ports, first-level instruction
caches, and first-level data caches between adjacent pairs of
processors. Resources could potentially be shared among
more than two processors, but this creates more topological
problems. Because we primarily investigate sharing between

1



pairs of processors, we call our approach conjoined-core chip
multiprocessors.

There are many ways that the shared resources can be allo-
cated to the processors in a conjoined configuration. We con-
sider both simple mechanisms, such as fixed allocation based
on odd and even cycles, as well as more intelligent sharing
arrangements we have developed as part of this work. All
of these sharing mechanisms must respect the constraints im-
posed by long-distance on-chip communication. In fact, we
assume in all of our sharing mechanisms that core-to-core de-
lays are too long to enable cycle-by-cycle arbitration of any
shared resource.

It is also possible that the best organization of a shared
resource is different than the best organization of a private
resource. For example, the right banking strategy may be dif-
ferent for shared memory structures than for private memory
structures. Therefore, we also examine tradeoffs in the design
of the shared resources as part of this study.

The chief advantage of our proposal is a significant reduc-
tion in per-core real estate with minimal impact on per-core
performance, providing a higher computational capability per
unit area. This can either be used to decrease the area of
the whole die, increasing the yield, or to support more cores
given a fixed die size. Ancillary benefits include a reduction
in leakage power due to a smaller number of transistors for a
given computational capability.

2 Related Work
Prior work has evaluated design space issues for allocating

resources to thread execution engines, both at a higher level
and at a lower level than is the target of this paper. At a
higher level, CMP, SMT, and CMPs composed of SMT cores
have been compared. At a lower level, previous work has
investigated both multithreaded and single-threaded clustered
architectures that break out portions of a single core and make
them more or less accessible to certain instructions or threads
within the core.

Krishnan and Torrellas study the tradeoffs of building mul-
tithreaded processors as either a group of single-threaded
CMP cores, a monolithic SMT core, or a hybrid design of
multiple SMT cores in [10]. Burns and Gaudiot [4] study this
as well. Both the studies conclude that the hybrid design, a
chip multiprocessor where the individual cores are SMT, rep-
resents a good performance-complexity design point. They
do not share resources between cores, however.

There has been some work on exploring clustering and
hardware partitioning for multithreaded processors. Collins
and Tullsen [5] evaluate various clustered multithreaded ar-
chitectures to enhance both IPC as well as cycle time. They
show that the synergistic combination of clustering and si-
multaneous multithreading minimizes the performance im-
pact of the clustered architecture, and even permits more ag-

gressive clustering of the processor than is possible with a
single-threaded processor.

Dolbeau and Seznec [6] propose the CASH architecture as
an intermediate design point between CMP and SMT archi-
tectures for improving performance. This work is probably
the closest prior work to ours. CASH shares caches, branch
predictors, and divide units between dynamically-scheduled
cores. CASH pools resources from two to four cores to create
larger dynamically shared structures with the goal of higher
per-core performance. However, the CASH work did not
evaluate the area and latency implications of wire routing re-
quired by sharing. In our work we consider sharing entire
FPUs and crossbar ports as well as caches, and attempt to
more accurately account for the latency and area of wiring
required by sharing. We also consider more sophisticated
sharing scheduling techniques which are consistent with the
limitations of global chip communication.

3 Baseline Architecture

Conjoined-core chip multiprocessing deviates from a con-
ventional chip multiprocessor design by sharing selected
hardware structures between adjacent cores to improve pro-
cessor efficiency. The choice of the structures to be shared
depends not only on the area occupied by the structures but
also whether it is topologically feasible without significant
disruption to the floorplan or wiring overheads. In this sec-
tion, we discuss the baseline chip multiprocessor architecture
and derive a reasonable floorplan for the processor, estimat-
ing area for the various on-chip structures.

3.1 Baseline processor model

For our evaluations, we assume a processor similar to Pi-
ranha [3], with eight cores sharing a 4MB, 8-banked, 4-way
set-associative, 128B L2 cache. The cores are modeled af-
ter Alpha 21164 (EV5). EV5 is a 4-issue in-order processor.
The various parameters of the processor are given in Table 1.
The processor was assumed to be implemented in 0.07micron
technology and clocked at 3.0 GHz.

For the baseline processor, each core has 64KB, 2-way
associative L1 caches (I��). The ICache is single-ported
while the DCache is dual-ported (2 R/W ports). The L1
cache sizes are similar to those of Piranha cores. A maxi-
mum of 4 instructions can be fetched in a given cycle from
the ICache. Linesize for both the L1 caches is 64 bytes.
Each core has a private FPU. Floating point divide and square
root are non-pipelined. All other floating point operations are
fully pipelined. The latency for all operations is modeled af-
ter EV5 latencies.

Cores are connected to the L2 cache using a point-to-point
fully-connected blocking matrix crossbar such that each core
can issue a request to any of the L2 cache banks every cycle.
However, one bank can entertain a request from only one of

2



2K-gshare branch predictor
Issues 4 integer instrs per cycle, including up to 2 Load/Store
Issues 2 FP instructions per cycle
4 MSHRs
64 Byte linesize for L1 caches, 128 Byte linesize for L2 cache
64k 2-way 3 cycle L1 Instruction cache (1 access/cycle)
64k 2-way 3 cycle L1 Data cache (2 access/cycle)
4MB 4-way set-associative, 8-bank 10 cycle L2 cache (3 cy-
cle/access)
4 cycle L1-L2 data transfer time plus 3 cycle transfer latency
450 cycle memory access time
64 entry DTLB, fully associative, 256 entry L2 DTLB
48 entry ITLB, fully associative
8KB pages

Table 1. Simulated Baseline Processor.

the cores any given cycle. Crossbar link latency is assumed
to be 3 cycles, and the data transfer time is 4 cycles.

Each bank of the L2 cache has a memory controller and
an associated RDRAM channel. The memory bus is assumed
to be clocked at 750MHz, with data being transferred on both
edges of the clock for an effective frequency of 1.5GHz and
an effective bandwidth of 3GB/s per bank (considering that
each RDRAM memory channel supports 30 pins and 2 data
bytes). Note that for any reasonable assumption about power
and ground pins, the total number of pins that this memory
organization would require would be well within the ITRS [1]
limits for the cost/performance market. Memory latency is
set to 150ns.

3.2 Die floorplan and area model
The baseline architecture and its floorplan is shown in Fig-

ure 1. We use CACTI to estimate the size and dimensions of
the L2 cache. Each 512KB bank is �������. CACTI gives
the aspect ratio to be 2.73. So, each bank is �����������.
Total L2 cache area is ��������. The area of the EV5-like
core (excluding L1 caches) was calculated using similar as-
sumptions and methodology as was used in [11], which also
featured multiple Alphas cores on a die and technology scal-
ing. Each core excluding caches is �������. CACTI gives
the area of of the L1 64KB, 2-way ICache to be ������� and
64KB, 2-way DCache to be 2.59���. Hence, including the
area occupied by private L1 caches, core area is �������.
If we assume an aspect-ratio of 1, it is ������� ������.
The total area for the eight cores is �������.

The crossbar area calculations involve measuring the area
occupied by the interconnect wires. Each link from a core to
a cache bank consists of roughly 300 lines. Of those, 256
lines correspond to a set of 128 unidirectional wires from
the L2 to the cores and another 128-bit data bus from the
cores to the L2 cache. We assume 20 lines correspond to the
20-bit unidirectional addressing signals while the rest corre-
spond to control signals. Since each of the cores needs to be
able to talk to each of the banks, there is a switched repeater

P3P2P1P0

P4 P5 P6 P7

M4 M5 M6 M7

M0 M1 M2 M3

Figure 1. Baseline die floorplan, with L2 cache banks
in the middle of the cluster, and processor cores (in-
cluding L1 caches) distributed around the outside.

corresponding to each core-to-bank interface. Therefore, the
number of horizontal tracks required per link would be ap-
proximately 300. The total number of input ports is equal to
the number of cores. So, the number of horizontal tracks re-
quired will be � � 	�� 
 ����. This would determine the
height of the crossbar. For the layout of the baseline proces-
sor (shown in Figure 1), the crossbar lies between the cores
and the L2 banks. Also, there are two clusters of intercon-
nects. The clusters are assumed to be connected by vertical
wires in the crossbar routing channels and by vertical wires
in upper metal layers that run over the top of the L2 cache
banks (see Figure 1).

We assume that all the (horizontal) connecting lines are
implemented in the M3/M5 layer. ITRS [1] and the “Fu-
ture of Wires” paper by Horowitz, et al. [8] predict that wire
pitch for a semi-global layer is 8-10�. Assuming ��� for
���������	, the pitch is 	��	�. Then the width of the
crossbar is �����	��	�
 ������. Hence, the area occu-
pied by the crossbar for the baseline processor is ��������.
This methodology of crossbar area estimation is similar to
that used in [9].

Therefore, the total area of the processor is ���������

out of which ������� is occupied by the cores, ��������

by the crossbar and �������� by the L2 cache.

4 Conjoined-core Architecture
For the conjoined-core chip multiprocessor, we consider

four optimizations – instruction cache sharing, data cache
sharing, FPU sharing, and crossbar sharing. For each kind
of sharing, two adjacent cores share the hardware structure.
In this section, we investigate the mechanism for each kind

3



of sharing and discuss the area benefits that they accrue. We
talk about the performance impact of sharing in Section 6.
The usage of the shared resource can be based on a policy
decided either statically, such that it can be accessed only dur-
ing fixed cycles by a certain core, or the accesses can be de-
termined based on certain dynamic conditions visible to both
cores (given adequate propagation time). The initial mech-
anisms discussed in this section all assume the simplest and
most naive static scheduling, where one of the cores gets ac-
cess to the shared resource during odd cycles while the other
core gets access during even cycles. More intelligent sharing
techniques/policies are discussed in Section 7. All of our
sharing policies, however, maintain the assumption that com-
munication distances between cores are too great to allow any
kind of dynamic cycle-level arbitration for shared resources.

Note that in modern high-performance pipelines (begin-
ning with the DEC Alpha 21064), variable operation latency
past the issue point as a result of FIFO-type structures is not
possible. This is because in modern pipelines, each pipestage
is only a small number of FO4 delays, and global communi-
cation plus control logic overhead for implementing stalling
on a cycle-by-cycle basis would drastically increase the cy-
cle time. Such stalling is required by variable delays because
instructions must be issued assuming results of previous op-
erations are available when expected. Instead any delay (such
as that required by a DCache miss instead of an expected hit)
results in a flush and replay of the missing reference plus the
following instructions. Although flush and replay overhead is
acceptable for rare long latency events such as cache misses,
it is unacceptable for routine operation of the pipeline. By as-
suming very simple fixed scheduling in the baseline sharing
case we guarantee that the later pipe stages do not need to be
stalled, and the cycle time of the pipeline is not adversely
affected. Later we examine more complex techniques for
scheduling sharing that remain compatible with high-speed
pipeline design.

Due to wiring overheads, it only makes sense to share rel-
atively large structures that already have routing overhead.
FPUs, crossbars, and caches all have this property. In con-
trast, ALUs in a datapath normally fit under the datapath
operand and result busses. Thus, placing something small
like an individual ALU remotely would actually result in a
very significant increase in bus wiring and chip area instead
of a savings, as well as increased latency and power dissipa-
tion.

4.1 ICache sharing

We implement ICache sharing between two cores by pro-
viding a shared fetch path from the ICache to both the
pipelines. Figure 2 shows a floorplan of two adjacent cores
sharing a 64KB, 2-way associative ICache. Because the lay-
out of memories is a function of the number of rows and
columns, we have increased the number of columns but re-

Figure 2. (a)Floorplan of the original core (b)Layout
of a conjoined-core pair, both showing FPU routing.
Routing and register files are schematic and not drawn
to scale.

duced the number of rows in the shared memory. This gives
a wider aspect ratio that can span two cores.

As mentioned, the ICache is time-shared every other cy-
cle. We investigate two ICache fetch widths. In the double
fetch width case, the fetch width is changed to 8 instructions
every other cycle (compared to 4 instructions every cycle in
the unshared case). The time-averaged effective fetch band-
width (ignoring branch effects) remains unchanged in this
case. In the original structure fetch width case, we leave the
fetch width to be the same. In this case the effective per-
core fetch bandwidth is halved. Finally, we also investigate a
banked architecture, where cores can fetch 4 instructions ev-
ery cycle, but only if their desired bank is allocated to them
that cycle.

In the double fetch width case, sharing results in a wider
instruction fetch path, wider multiplexors and extra instruc-

4



tion buffers before decode for the instruction front end. We
have modeled this area increase and we also assume that shar-
ing increases the access latency by 1 cycle. The double fetch
width solution would also result in higher power consump-
tion per fetch. Furthermore, since longer fetch blocks are
more likely to include taken branches out of the block, the
fetch efficiency is somewhat reduced. We also evaluate two
cases corresponding to a shared instruction cache with an un-
changed fetch width – one with the access time extended by
a cycle and another when it remains unchanged.

Based on modeling with CACTI, in the baseline case each
ICache takes up �������. In the double fetch width case,
the ICache has double the bandwidth (BITOUT=256), and re-
quires 1.16���. However, instead of 8 ICaches on the die,
there are just four of them. This results in a core-area sav-
ings of ����. In the normal fetch width case (BITOUT=128),
sharing results in core-area savings of ����.

4.2 DCache sharing
Even though the DCaches occupy a significant area,

DCache sharing is not an obvious candidate for sharing be-
cause of its relatively high utilization. In our DCache sharing
experiments, two adjacent cores share a 64KB, 2-way set-
associative L1 DCache. Each core can issue memory instruc-
tions only every other cycle.

Sharing entails lengthened wires that increase access la-
tency slightly. This latency may or may not be able to be
hidden in the pipeline. Thus, we evaluate two cases – one
where the access time is lengthened by one cycle and another
where the access time remains unchanged.

Based on modeling with CACTI, each dual-ported
DCache takes up 2.59��� in the baseline processor. In the
shared case, it takes up the area of just one cache for every
two cores, but with some additional wiring. This results in
core-area savings of ������.

4.3 Crossbar sharing
As shown in Section 3, the crossbar occupies a significant

fraction (13%) of the die area. The configuration and com-
plexity of the crossbar is strongly tied to the number of cores,
and hence we also study how crossbar sharing can be used to
free up die area. This study also forms a subset of the larger
study that is required for area-efficient interconnect designs
for chip multiprocessors.

Crossbar sharing involves two adjacent cores sharing an
input port to the L2 cache’s crossbar interconnect. This
halves the number of rows (or columns) in the crossbar matrix
resulting in linear area savings. Crossbar sharing entails that
only one of the two conjoined cores can issue a request to a
particular L2 cache bank in a given cycle. Again, we assume
a baseline implementation where one of the conjoined cores
can issue requests to a bank every odd cycle, while the other
conjoined core can issue requests only on even cycles. There

Figure 3. Die floorplan with crossbar sharing.

would also be some overhead in routing signal and data to the
shared input port. Hence, we assume the point-to-point com-
munication latency will be lengthened by one cycle for the
conjoined core case. Figure 10 shows conjoined core pairs
sharing input ports to the crossbar.

Crossbar sharing results in halving the area occupied by
the interconnect and results in ���	� die area savings. This
is equivalent to 1.38 times the size of a single core.

Note that this is not the only way to reduce the area oc-
cupied by the crossbar interconnect. One can alternatively
halve the number of wires for a given point-to-point link to
(approximately) halve the area occupied by that link. This
would, though, double the transfer latency for each connec-
tion. In section 6, we compare both these approaches and
show that this performs worse than our port-sharing solution.

Finally, if the DCache and ICache are already shared be-
tween two cores, sharing the crossbar port between the same
two cores is very straightforward since the cores have already
been joined together before reaching the crossbar.

4.4 FPU sharing
Processor floorplans often have the FPU on one side and

the integer datapath on the other side. So, FPU sharing can
be enabled by simply mirroring adjacent processors without
significant disruption to the floorplan. Wires connecting the
FPU to the left core and the right core can be interdigitated, so
no additional horizontal wiring tracks are required (see Fig-
ure 2). This also does not significantly increase the length of
wires in comparison the the non-conjoined case.

In our baseline FPU sharing model, each conjoined core
can issue floating-point instructions to the fully-pipelined
floating-point sub-units only every other cycle. Based on our
design experience, we believe that there would be no opera-
tion latency increase when sharing pipelined FPU sub-units

5



between the cores. This is because for arithmetic operations
the FP registers remain local to the FPU. For transfers and
load/store operations, the routing distances from the integer
datapath and caches to the FPU remain largely unchanged
(see Figure 2). For the non-pipelined sub-units (e.g., divides
and square root) we assume alternating three cycle schedul-
ing windows for each core. If a non-pipelined unit is available
at the start of its three-cycle window, the core may start using
it, and has the remainder of the scheduling window to com-
municate this to the other core. Thus, when the non-pipelined
units are idle, each core can only start a non-pipelined oper-
ation once every six cycles. However, since operations have
a known long latency, there is no additional scheduling over-
head needed at the end of non-pipelined operations. Thus,
when a non-pipelined unit is in use, another core waiting for
it can begin using the non-pipelined unit on the first cycle it
becomes available.

The FPU area for EV5 is derived from published die pho-
tos, scaling the numbers to 0.07 micron technology and then
subtracting the area occupied by the FP register file. The EV5
FPU takes up ������� including the FP register file. We es-
timate the area taken up by a 5ERP, 4EWP, 32-entry FP reg-
ister file using register-bit equivalents (rbe). The total area
of the FPU (excluding the register file) is �������. Shar-
ing results in halving the number of units and results in area
savings of 6.1%.

We also consider a case where each core has its own copy
of the divide sub-unit, while the other FPU sub-units are
shared. We estimated the area of the divide sub-unit to be
0.0524���. Total area savings in that case is 5.7%.

4.5 Summary of sharing
To sum up, ICache sharing results in core-area savings of

9.9%, DCache sharing results in core-area savings of 22%,
FPU sharing saves 6.1% of the core-area, and sharing the in-
put ports to the crossbar can result in a savings of 1.4 cores.
Statically deciding to let each conjoined core access a shared
hardware structure only every other cycle provides an upper-
bound on the possible degradation. As our results in Sec-
tion 6 indicate, even these conservative assumptions lead to
relatively small performance degradation and hence reinforce
the argument for conjoined-core chip multiprocessing.

5 Experimental Methodology
Benchmarks are simulated using SMTSIM, an execution-

driven simulator that simulates an out-of-order, simultaneous
multithreading processor [14]. SMTSIM executes unmodi-
fied, statically linked Alpha binaries. The simulator was mod-
ified to simulate the various chip multiprocessor (conjoined
as well as conventional) architectures.

Several of our evaluations are done for various numbers
of threads ranging from one through a maximum number of
available processor contexts. Each result corresponds to one

Program Description FF Dist
(in millions)

bzip2 Compression 5200
crafty Game Playing:Chess 100
eon Computer Visualization 1900
gzip Compression 400
mcf Combinatorial Optimization 3170
perl PERL Programming Language 200
twolf Place and Route Simulator 3200
vpr FPGA Circuit Placement and Routing 7200

applu Parabolic/Elliptic Partial Diff. Eqn. 1900
apsi Meteorology:Pollutant Distribution 4700
art Image Recognition/Neural Networks 6800
equake Seismic Wave Propagation Simulation 19500
facerec Image Processing: Face Recognition 13700
fma3d Finite-element Crash Simulation 29900
mesa 3-D Graphics Library 9000
wupwise Physics/Quantum Chromodynamics 58500

Table 2. Benchmarks simulated.

of three sets of eight benchmarks, where each data point is
the average of several permutations of those benchmarks.

Table 2 shows the subset of the SPEC CPU2000 bench-
mark suite that was used. The benchmarks are cho-
sen such that out of the 8 CINT2000 benchmarks, half
of them (vpr,crafty,eon,twolf) have a dataset of less than
100MB while the remaining half have datasets bigger
than 100MB. Similarly, for CFP2000 benchmarks, half of
them (wupwise,applu,apsi,fma3d) have datasets bigger than
100MB while the remaining half have datasets of less than
100MB. We also perform all our evaluations for mixed
workloads which are generated using 4 integer benchmarks
(bzip2,mcf,crafty,eon) and 4 floating-point benchmarks (wup-
wise, applu, art, mesa). Again, the subsetting was done based
on application datasets.

All the data points are generated by evaluating 8 work-
loads for each case and then averaging the results. A work-
load consisting of 	 threads is constructed by selecting the
benchmarks using a sliding window (with wraparound) of
size 	 and then shifting the window right by one. Since there
are 8 distinct benchmarks, the window selects eight distinct
workloads (except for cases when the window-size is a mul-
tiple of 8, in those cases all the selected workloads have iden-
tical composition). All of these workloads are run, ensur-
ing that each benchmark is equally represented at every data
point. This methodology for workload construction is similar
to that used in [13].

We also perform evaluations using the parallel bench-
mark water from the SPLASH benchmark suite and use the
STREAM benchmark for crossbar evaluations. We change
the problem size of STREAM to 16384 elements. At this
size, when running eight copies of STREAM, the working
set fits into the L2-cache and hence it acts as a worst-case test
of L1-L2 bandwidth (and hence crossbar interconnect). We
also removed the timing statistics collection routines.

6



The Simpoint tool [12] was used to find good representa-
tive fast-forward distances for each SPEC benchmark. Early
simpoints are used. Table 2 also shows the distance to which
each benchmark was fast-forwarded before beginning simu-
lation. For water, fast-forwarding is done just enough so that
the parallel threads get forked. We do not fast forward for
STREAM.

All simulations involving 	 threads are preceded by a
warmup of �� � 	 million cycles. Simulation length was
800 million cycles. All the SPEC benchmarks are simulated
using ref inputs. All the performance results are in terms
of throughput. We also performed all our evaluations using
the weighted speedup metric [13] and observed no significant
difference in our analyses or conclusions.

6 Simple Sharing
This section examines the performance impact of con-

joining cores assuming simple time-slicing of the shared re-
sources on alternate cycles. More intelligent sharing tech-
niques are discussed in the next section.

In this section, we show results for various threading lev-
els. We schedule the workloads statically and randomly such
that two threads are run together on a conjoined-core pair
only if one of them cannot be placed elsewhere. Hence, for
the given architecture, for 1 to 4 threads, there is no other
thread that is competing for the shared resource. If we have
5 runnable threads, one of the threads needs to be put on
a conjoined-core pair that is already running a thread. And
so on. However, even if there is no other thread running on
the other core belonging to a conjoined-core pair, we still as-
sume, in this section, that accesses can be made to the shared
resource by a core only every other cycle.

6.1 Sharing the ICache
Results are shown as performance degradation relative to

the the baseline conventional CMP architecture. Performance
degradation experienced with ICache sharing comes from
three sources: increased access latency, reduced effective
fetch bandwidth, and inter-thread conflicts. Effective fetch
bandwidth can be reduced even if the fetch width is doubled
because of the decreased likelihood of filling an eight-wide
fetch with useful instructions, relative to a four-wide fetch.

Figure 4 shows the performance impact of ICache sharing
for varied threading levels for SPEC-based workloads. The
results are shown for a fetch width of 8 instructions and as-
suming that there is an extra cycle latency for ICache access
due to sharing. We assume the extra cycle is required since
in the worst case the round-trip distance to read an ICache bit
has gone up by two times the original core width due to shar-
ing. We observe a performance degradation of 5% for integer
workloads, 1.2% for FP workloads and 2.2% for mixed work-
loads. The performance degradation does not change signif-
icantly when the number of threads is increased from 1 to 8.

Figure 4. Impact of ICache sharing for various
threading levels.

This indicates that inter-thread conflicts are not a problem for
this workload and these caches. The SPEC benchmarks are
known to have relatively small instruction working sets.

To identify the main cause for performance degradation on
ICache sharing, we also show results assuming that there is
no extra cycle increase in the latency. Figure 5 shows the 8-
thread results for both integer and floating-point workloads.
Performance degradation becomes less than 0.25%. Two con-
clusions can be drawn from this. First, the extra latency is the
main reason for degradation on ICache sharing (note that the
latency does not introduce a bubble in the pipeline – the per-
formance degradation comes from the increased branch mis-
predict penalty due to the pipeline being extended by a cy-
cle). The integer benchmarks are most affected by the extra
cycle latency, being more sensitive to the branch mispredict
penalty.

Increasing fetch width to 8 instructions ensures that the
potential fetch bandwidth remains the same for the sharing
case as the baseline case, but it increases the size of the
ICache (relative to a single ICache in the base case) and re-
sults in increased power consumption. This is because dou-
bling the output width doubles both the number of sense amps
and the data output lines being driven, and these structures ac-
count for much of the power in the original cache. Thus, we
also investigate the case where fetch width is kept the same.
Hence, only up to 4 instructions can be fetched every other
cycle (effectively halving the per-core fetch bandwidth). Fig-
ure 5 shows the results for 8-thread workloads. As can be
seen, degradation jumps up to 16% for integer workloads and
10.2% for floating-point workloads. This is because at effec-
tive fetch bandwidth of 2 instructions every cycle (per core),
the execution starts becoming fetch limited.

We also investigate the impact of partitioning the ICache
vertically into two equal sized banks. A core can alternate
accesses between the two banks. It can fetch 4 instructions
every cycle but only if their desired bank is available. A core
has access to bank 0 one cycle, bank 1 the next, etc., with the
other core having the opposite allocation. This allows both
threads to access the cache in some cycles. It is also possi-

7



Figure 5. ICache sharing when no extra latency over-
head is assumed, cache structure bandwidth is not dou-
bled, and cache is doubly banked.

ble for both threads to be blocked in some cycles. However,
bandwidth is guaranteed to exceed the previous case (ignor-
ing cache miss effects) of one 4-instruction fetch every other
cycle, because every cycle that both threads fail to get access
will be immediately followed by a cycle in which they both
can access the cache.

Figure 5 shows the results. Degradation goes down by
55% for integer workloads and 53% for FP workloads due to
overall improvement in fetch bandwidth.

6.2 DCache sharing
Similar to the ICache, performance degradation due to

DCache sharing comes from: increased access latency, re-
duced cache bandwidth, and inter-thread conflicts. Unlike
the ICache, the DCache latency has a direct effect on perfor-
mance, as the latency of the load is effectively increased if it
cannot issue on the first cycle it is ready.

Figure 6 shows the impact on performance due to DCache
sharing for SPEC workloads. The results are shown for var-
ious threading levels. We observe a performance degrada-
tion of 4-10% for integer workloads, 1-9% for floating point
workloads and 2-13% for mixed workloads. Degradation is
higher for integer workloads than floating point workloads
for small numbers of threads. This is because the typically
higher ILP of the FP workloads allows them to hide a small
increase in latency more effectively. Also, inter-thread con-
flicts are higher, resulting in increased performance degrada-
tion for higher numbers of threads.

We also studied the case where the shared DCache has the
same access latency as the unshared DCache. Figure 7 shows
the results for the 8-thread case. Degradation lessens for both
integer workloads as well as floating-point workloads, but
less so in the case of FP workloads as conflict misses and
cache bandwidth pressure remain.

6.3 FPU sharing
FPUs may be the most obvious candidates for sharing.

For SPEC CINT2000 benchmarks only 0.1% of instruc-

Figure 6. Impact of Dcache sharing for various
threading levels.

Figure 7. DCache sharing when no extra latency over-
head is assumed.

tions are floating point while even for CFP2000 benchmarks,
only 32.3% of instructions are floating-point instructions [2].
Also, FPU bandwidth is a performance bottleneck only for
specialized applications.

We evaluated FPU sharing for integer workloads, FP
workloads, and mixed workloads, but only present the FP
and mixed results (Figure 8) here. The degradation is less
than 0.5% for all levels of threading, even in these cases.

One reason for these results is that the competition for
the non-pipelined units (divide and square root) is negligi-
ble in the SPEC benchmarks. To illustrate code where non-
pipelined units are more heavily used, Figure 9 shows the

Figure 8. Impact of FPU sharing for various thread-
ing levels.

8



Figure 9. Impact of private FP divide sub-units.

performance of water (which has a non-trivial number of di-
vides) running eight threads. It shows performance with a
shared FP divide unit vs. unshared FP divide units. In this
case, unless each core has its own copy of the FP divide unit,
performance degradation can be significant.

6.4 Crossbar sharing

We implement the L1-L2 interconnect as a blocking fully-
connected matrix crossbar, based on the initial Piranha de-
sign. As the volume of traffic between L1 and L2 increases,
the utilization of the crossbar goes up. Since there is a sin-
gle path from a core to a bank, high utilization can result in
contention and queueing delays.

As discussed in section 4, the area of the crossbar can be
reduced by decreasing the width of the crossbar links or by
sharing the ports of the crossbar, thereby reducing the num-
ber of links. We examine both techniques. Crossbar shar-
ing involves the conjoined cores sharing an input port of the
crossbar. Figure 10 shows the results for eight copies of the
STREAM benchmark. It must be noted that this is a compo-
nent benchmark we have tuned for worst-case utilization of
the crossbar. The results are shown in terms of performance
degradation caused for achieving certain area savings. For ex-
ample, for achieving crossbar area savings of 75% (area/4),
we assume that the latency of every crossbar link has been
doubled for the crossbar sharing case while the latency has
been quadrupled for the crossbar width reduction case.

We observe that crossbar sharing outperforms crossbar
width reduction in all cases. Even though sharing results in
increased contention at the input ports, it is the latency of the
links that is primarily responsible for queuing of requests and
hence overall performance degradation.

We also conducted crossbar exploration experiments using
SPEC benchmarks. However, most of the benchmarks do not
exercise L1-L2 bandwidth much, resulting in relatively low
crossbar utilization rates. The performance degradation in
the worst case was less than 5% for an area reduction factor
of 2.

Figure 10. Reducing crossbar area through width re-
duction and port sharing.

6.5 Simple sharing summary
Note that for all the results in this section, we assume

that the shared resource is accessible only every other cycle
even if the other core on a conjoined-core pair is idle. This
was done to expose the factors contributing to overall perfor-
mance degradation. However, in a realistic case, if there is
no program running on the other core, the shared resources
can be made fully accessible to the core running the pro-
gram and hence there would be no (or much smaller) degra-
dation. Thus, for the above sharing cases, the degradation
values for threading levels of four are overstated. In fact, the
performance degradation due to conjoining will be minimal
for light as well as medium loads.

This section indicates that, even in the absence of sophis-
ticated sharing techniques, conjoined-core multiprocessing is
a reasonable approach. Optimizations in the next section
make it even more attractive. It might be argued that this
is simply evidence of the over-provisioning of our baseline
design. There are two reasons why that is the wrong conclu-
sion. First, our baseline is based on real designs, and is not
at all aggressive compared to modern processor architectures.
Second, real processors are over-provisioned – to some extent
that is the point of this study. Designers provision the CPU
for the few important applications that really stress a particu-
lar resource. What this research shows is that we can maintain
that same level of provisioning for any single thread, without
multiplying the cost of that provisioning by the number of
cores.

7 Intelligent Sharing of Resources
The previous section assumed a very basic sharing policy

and hence gave an upper bound on the degradation for each
kind of sharing. In this section, we discuss more advanced
techniques for minimizing performance degradation.

7.1 ICache sharing
In this section, we will focus on that configuration that

minimized area, but maximized slowdown — the four-wide

9



Figure 11. ICache assertive access results when the
original structure bandwidth is not doubled.

fetch shared ICache, assuming an extra cycle of latency.
In that case, both access latency and fetch bandwidth con-
tribute to the overall degradation. We propose two techniques
for minimizing degradation in that case. Most of these re-
sults would also apply to the other configurations of shared
ICache, taking them even closer to zero degradation.

7.1.1 Assertive ICache Access
Section 6 discussed sharing such that the shared resource gets
accessed evenly irrespective of the access needs of the indi-
vidual cores. Instead, the control of a shared resource can be
decided assertively based on the resource needs.

We explore assertive ICache access where, whenever
there is an L1 miss, the other core can take control of the
cache after miss detection. We assume that a miss can be de-
tected and communicated to the other core in 3 cycles. The
control would start getting shared again when the data re-
turns. This does not incur any additional latency since the
arrival cycle of the data is known well in advance of its re-
turn.

Figure 11 shows the results for assertive icache access.
Like all graphs in this section, we show results for eight
threads, where contention is highest. We observe a 13.7%
improvement in the degradation of integer workloads and an
improvement of 22.5% for floating point workloads. Perfor-
mance improvement is because of improved effective fetch
bandwidth. These results are for eight threads, so there is
no contribution from threads that are not sharing an ICache.
A minor tweak to assertive access (for ICache as well as
DCache and FPU) can ensure that the shared resource be-
comes a private resource when the other core of the conjoined
pair is idle.

7.1.2 Fetch combining
Most parallel code is composed of multiple threads, each exe-
cuting code from the same or similar regions of the shared ex-
ecutable (possibly synchronizing occasionally to ensure they
stay in the same region). Hence, it is not uncommon for two

Figure 12. Fetch-combining results.

or more threads to be fetching from the same address in a
particular cycle.

In a conjoined-core architecture with shared ICache, this
property can be exploited for improving overall fetch band-
width. We propose fetch combining – when two threads run-
ning on the same conjoined-core pair have the same nextPC
cache index, then they both can return data from the cache
that cycle. The overhead for fetch combining is minimal, un-
der the following assumptions. We assume that the fetch units
are designed so that, in the absence of sharing (no thread as-
signed to the alternate core), one core can fetch every cycle.
Thus, each core has the ability to generate a nextPC cache
index every cycle, and to consume a fetch line every cycle.
In sharing mode, however, only one request is filled. Thus, in
sharing mode with fetch combining, both cores can present
a PC to the ICache, but only the PC associated with the core
with access rights that cycle is serviced. However, if the pre-
sented PCs are identical, the alternate core also reads the data
presented on the (already shared) output port and bus. This is
simplified if there is some decoupling of the branch predic-
tor from the fetch unit. If a queue of nextPC cache indices
is buffered close to the ICache, we can continue to present
new PCs to the cache every cycle, even if it takes more than
a cycle for the result of the PC comparison to get back to the
core.

We find that the frequency of coincident indices is quite
high – this is because once the addresses match, they tend to
stay synched up until the control flow diverges.

Figure 12 shows the performance of fetch combining for
water running eight threads. We observed a 25% reduction
of performance degradation. Note that fetch combining is
appropriate for other multithreading schemes like SMT, etc.

7.2 DCache sharing

Performance loss due to DCache sharing is due to three
factors – inter-thread conflict misses, reduced bandwidth and
increased latency (if applicable). We propose two techniques
for minimizing degradation due to DCache sharing.

10



Figure 13. Effect of assertive access and static assign-
ment.

7.2.1 Assertive DCache Access
Assertive access can also be used for the shared DCaches.
Whenever there is an L1 miss on some data requested by a
core, if the load is determined to be on the right path, the core
relinquishes control over the shared DCache. There may be
some delay between detection of L1 miss and the determi-
nation that the load is on the right path. Once the core re-
linquishes control, the other core takes over full control and
can then access the DCache whenever it wants. The timings
are the same as with the ICache assertive access. This pol-
icy is still somewhat naive, assuming that the processor will
stall for this load (recall, these are in-order cores) before an-
other load is ready to issue – more sophisticated policies are
possible, and are the subject of further investigation.

Figure 13 shows the results. Assertive access leads to
29.6% improvements in the degradation for integer work-
loads and 23.7% improvements for floating point workloads.
Improvements are due to improved data bandwidth.

7.2.2 I/O partitioning
The Dcache interface consists of two R/W ports. In the basic
DCache sharing case, the DCache (and hence both the ports)
can be accessed only every other cycle. Instead, one port can
be statically assigned to each of the cores and that will make
the DCache accessible every cycle.

Figure 13 shows the results comparing the baseline shar-
ing policy against static port-to-core assignment. We ob-
served a 33.6% reduction in degradation for integer work-
loads while the difference for FP workloads was only 3%.
This outperforms the cycle-slicing mechanism, particularly
for integer benchmarks, for the following reason: when load
port utilization is not high, the likelihood (with port partition-
ing) of a port being available when a load becomes ready is
high. However, with cycle-by-cycle slicing, the likelihood of
a port being available that cycle is only 50%.

7.3 Symbiotic assignment of threads
Previous techniques involved either using additional hard-

ware for minimizing performance impact or scheduling ac-
cesses to the shared resources intelligently. Alternatively,

Units Shared Perf. Degradation Core Area
Int Aps FP Aps Savings

Crossbar+FPU 0.97% 1.2% 23.1%
Crossbar+FPU+ICache 4.7% 3.9% 33.0%
Crossbar+FPU+DCache 6.1% 6.8% 45.2%
ICache+DCache 11.4% 7.6% 32.0%
Crossbar+FPU+ICache+DCache 11.9% 8.5% 55.1%

Table 3. Results with multiple sharings.

high-level scheduling of applications can be done such
that “friendly” threads run on conjoined cores. Symbiotic
scheduling has been shown previously to result in signifi-
cant benefits on an SMT architecture [13] and involves co-
scheduling threads to minimize competition for shared re-
sources.

Since conflict misses are a significant source of perfor-
mance degradation for DCache sharing, we evaluated the
impact of scheduling applications intelligently on the cores
instead of random mapping. Intelligent mapping involved
putting programs on a conjoined-core pair that would not
cause as many conflict misses and hence lessen the degra-
dation. For symbiotic scheduling with 8 threads, we found
the degradation decreased by 20% for integer workloads and
25.5% for FP workloads.

8 A Unified Conjoined Core Architecture

We have studied various combinations of FPU, crossbar,
ICache, and DCache sharing. We assumed a shared doubly-
banked ICache with a fetch-width of 16 bytes (similar to that
used in Section 6.1), I/O partitioned shared DCache (similar
to that used in Section 7.2.2), a fully-shared FPU and a shared
crossbar input port for every conjoined-core pair. Sharing
ICache, DCache, as well as the crossbar is assumed to have
one cycle extra overhead. We assume that each shared struc-
ture can be assertively accessed. Assertive access for the I/O
partitioned dual-ported DCache involves accessing the other
port (the one not assigned to the core) assertively. Figure 3
shows the resulting area savings and performance for various
sharing combinations. We map the applications to the cores
such that “friendly” threads run on the conjoined cores where
possible. All performance numbers are for the worst case
when all cores are busy with threads.

The combination with all four types of sharing results in
38.1% core-area savings (excluding crossbar savings). In
absolute terms, this is equivalent to the area occupied by
3.76 cores. If crossbar savings are included, then the total
area saved is equivalent to 5.14 times the area of a core.
We observed a 11.9% degradation for integer workloads and
8.5% degradation for floating-point workloads. Note that the
degradation is significantly less than the sum of the individual
degradation values that we observed for each kind of sharing.
This is because a stall due to one bottleneck often either tol-
erates or obviates a stall due to some other bottleneck.

11



Another attractive configuration utilizes only FPU and
crossbar sharing. This configuration provides a 23.1% reduc-
tion in core area while degrading performance by around 1%
in the worst case with all cores busy, and provides the highest
marginal utility for sharing. This configuration also has the
advantage of being simpler to implement than configurations
that share caches.

The results in Table 3 show that conjoined-core architec-
tures can give superior computational efficiency over conven-
tional non-conjoined cores. The area savings they give can be
used to provide either reduced die area and hence increased
yield, or can be leveraged to provide a significant increase in
performance by implementing more cores in the same area.

Finally, besides providing an area efficiency advantage,
conjoining can also result in more power-efficient computa-
tion. Since memory cells can be engineered to have low
leakage, leakage power is primarily a function of the amount
of high-performance logic. Thus by sharing FPUs and/or the
peripheral logic of caches, the number of logic circuits and
hence the leakage power of a multiprocessor can be signif-
icantly reduced. Moreover, dynamic power per instruction
can also be reduced since the crossbar interconnect lengths
that computation must traverse can be reduced by reducing
the area of the cores.

9 Conclusions

This paper examines conjoined core multiprocessing, se-
lectively targeting opportunities to share resources on an oth-
erwise statically partitioned chip multiprocessor. In partic-
ular, we seek to achieve area savings, dynamic power re-
duction, and leakage reduction by sharing resources that
have sufficient bandwidth and/or capacity to service multi-
ple cores. We add the additional constraint that the sharing is
topologically feasible with minimal impact to a conventional
core layout.

This paper examines sharing of the floating point units,
the crossbar network ports, and the first-level ICache and
DCache. We show that, given a set of novel optimizations
that reduce the negative impacts of this sharing, we can re-
duce area requirements by more than 50%, while achiev-
ing performance within 9-12% of conventional cores without
conjoining. Alternatively, by only sharing floating point units
and crossbar ports, core area can be reduced by more than
23% while achieving performance within 2% of conventional
cores without conjoining.

These gains are a combination of the inherent advantage
of sharing resources provisioned for worst-case utilization,
and the application of new sharing policies that allow high
bandwidth access to these resources without additional com-
plexity.

Acknowledgments

The authors would like to thank Partha Ranganathan for
his contributions to the paper, as well as the anonymous ref-
erees. The research was funded in part by NSF grant CCR-
0311683 and a grant from the Semiconductor Research Cor-
poration.

References

[1] International Technology Roadmap for Semiconductors 2003,
http://public.itrs.net.

[2] Measuring processor performance with SPEC2000- a white
paper, Intel Corporation. 2002.

[3] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-
ranha: A scalable architecture based on single-chip multipro-
cessing. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, 2000.

[4] J. Burns and J.-L. Gaudiot. Area and system clock effects on
smt/cmp processors. In Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Tech-
niques, page 211. IEEE Computer Society, 2001.

[5] J. Collins and D. Tullsen. Clustered multithreaded architec-
tures – pursuing both IPC and cycle time. In Proceedings of
IPDPS, Apr. 2004.

[6] R. Dolbeau and A. Seznec. CASH: Revisiting hardware shar-
ing in single-chip parallel processor. IRISA Report 1491, Nov.
2002.

[7] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip
multiprocessor. volume 30, pages 79–85, 1997.

[8] R. Ho, K. Mai, and M. Horowitz. The future of wires. Pro-
ceedings of the IEEE, 89(4):490–504, 2001.

[9] F. Karim, A. Nguyen, S. Dey, and R. Rao. On-chip com-
munication architecture for oc-768 network processors. In
Proceedings of the 2001 Design and Automation Conference,
2001.

[10] V. Krishnan and J. Torrellas. A clustered approach to multi-
threaded processors. In Proceedings of the International Par-
allel Processing Symposium, pages 627–634, Mar. 1998.

[11] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA Heterogeneous Multi-core Archi-
tectures: The Potential for Processor Power Reduction. In
International Symposium on Microarchitecture, Dec. 2003.

[12] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder.
Discovering and exploiting program phases. In IEEE Micro:
Micro’s Top Picks from Computer Architecture Conferences,
Dec. 2003.

[13] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading architecture. In Eighth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[14] D. Tullsen. Simulation and modeling of a simultaneous multi-
threading processor. In 22nd Annual Computer Measurement
Group Conference, Dec. 1996.

[15] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In 22nd Annual Inter-
national Symposium on Computer Architecture, June 1995.

12


