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ABSTRACT
As technology scales and the energy of computation contin-
ually approaches thermal equilibrium [1,2], parameter varia-
tions and noise levels will lead to larger error rates at various
levels of the computation stack. The error rates would be es-
pecially high for post-CMOS and nanoelectronic systems as
well as for probabilistic [3] and stochastic architectures [4].
N-modular redundancy (NMR) at the core-level has been
proposed as a way to attain system reliability goals for multi-
core architectures. While core-level DMR and TMR have
been shown to be effective when errors are rare, a large
amount of core-level redundancy will be required for attain-
ing system reliability goals in face of high error rates. This
makes voting latency and bandwidth significant performance
bottlenecks for such systems. In this paper, we present a
scalable NMR framework for error prone chip multiproces-
sors(CMPs). The framework supports in-network fault tol-
erance where voting logic is integrated into routers to allow
for truly distributed voting. The in-network fault tolerance
router utilizes the expected redundancy in vote messages, to
reduce some of the blocking overhead incurred at the leader,
and also provide a mechanism to trade-off network band-
width with latency. Our framework also supports proactive
checkpoint deallocation which allows cores participating in
voting to continue on with execution instead of waiting on
notification from the voting logic. Finally, the framework
supports dynamic constitution that allows an arbitrary core
on this chip to be a part of an NMR group. This allows by-
passing faulty cores as well as scheduling for performance.
Our experiments show significant performance/bandwidth
benefits from these optimizations.

Categories and Subject Descriptors
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1. INTRODUCTION
As technology scales and the energy of computation con-

tinually approaches thermal equilibrium [1, 2], parameter
variations and noise levels will lead to larger error rates and,
therefore, larger overheads of error management at various
levels of the computation stack. For example, variations in
process, voltage, and temperature add complexity and over-
head at the circuit level in order to achieve correct operation
over a range of parameter values. [2,5] With technology scal-
ing, many of these variations are becoming very difficult to
manage and tolerate at the circuit-level, forcing upper levels
of computation stack to deal with a reduction in reliability
[6,7].

While errors have traditionally been rare in computer sys-
tems, error rates and hence the overhead of error man-
agement are expected to be high for systems built using
post-CMOS [8] and nanoscale [9] devices. Such substrates
exhibit extreme levels of non-idealities [10], especially in
face of process, temperature, and voltage variations. These
non-idealities can result in significant number of transient
and permanent failures as confirmed by PTM [11] and CN-
FET [12] models.

Error rates will be high even for architectures where volt-
age and frequency are overscaled for throughput and power
improvements. For example, probabilistic SOCs [3] aim at
reducing the voltage of probabilistic co-processors to a sub-
threshold voltage. This overscaling results in a large num-
ber of architecture-level errors. Similarly, stochastic proces-
sors [4] aim to reduce the voltage of processors below their
critical voltage. They also aim to increase the frequency of
processors above the critical frequency. Under such situa-
tions, error rates can be high.

N-modular redundancy (NMR) at the core-level has pre-
viously been proposed as a way to attain system reliability
goals for multi-core architectures. While the exact imple-
mentations may vary, core-level NMR typically involves run-
ning multiple copies of a program on different cores. Every
write is buffered locally until voting is triggered (a trigger
can be time-based or event-based) when one or more writ-
ten values are voted on. Based on the results of voting,
each copy of the program continues or rolls back to a check-



point (which was created using the previously validated ar-
chitecture state). The attractiveness of core-level NMR for
multi-core architectures is primarily due to the flexibility it
provides in terms of dynamic power/reliability/performance
tradeoffs.

While core-level dual-modular redundancy (DMR) and
triple-modular redundancy (TMR) have been shown to be
effective when errors are rare, a large amount of core-level
redundancy will be required for attaining system reliability
goals in face of high error rates. Figure 1 illustrates this
fact,1 showing that even with a plurality voter (2ofN), 2

NMR groups of more than 3-8 cores may be necessary for
relatively high system reliability targets and component re-
liabilities (1- error rate) of future technologies. In fact, some
applications with strict performance requirements may re-
quire additional redundancy in order to maximize availabil-
ity.
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Figure 1: Minimum number of cores required in or-
der to meet three different system reliability targets
(i.e. 0.8, 0.99, and 0.9999) with varying component
reliabilities shown on the x-axis.

Under such high degrees of core-level redundancy, tradi-
tional core-level NMR framework may not be effective as
voting latency and bandwidth can become significant per-
formance bottlenecks for such systems. This is due to the
fact that the voting latency and bandwidth scale with the
number of cores that form an NMR group. In this paper, we
present a scalable NMR framework for error prone CMPs.
The framework supports in-network fault tolerance where
voting logic is integrated into routers to allow for distributed
voting. The integrated router utilizes the expected redun-
dancy in vote messages, to reduce some of the blocking over-
head incurred at the leader, and also provide a mechanism
to trade-off network bandwidth with latency. Our frame-
work also supports proactive checkpoint deallocation which
allows cores participating in voting to continue on with ex-
ecution instead of waiting on notification from the voting
logic. Finally, the framework supports dynamic constitu-

1Figures 1to 3 are derived from an analytical model of NMR
based reliability frameworks.
2In a plurality voter, a minimum of 2 of N modules must
agree on an output value in order to proceed with the pro-
gram. If the largest set of values is unique, it is always cho-
sen. Otherwise, one of the non-unique largest sets is chosen
at random in order to proceed.

tion that allows an arbitrary core on this chip to be a part
of an NMR group. This allows bypassing faulty cores as
well as scheduling for performance. Our experiments show
significant performance/bandwidth benefits from these op-
timizations.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 presents the need for
a low-latency, low-bandwidth NMR framework in face of
high error rates. It also motivates the need for the core-
level NMR framework to allow scalable dynamic coupling
of cores. Section 4 presents a scalable NMR framework
with support for in-network fault tolerance and proactive
checkpoint deallocation. Section 6 analyzes the benefits of
our optimizations. Section 7 summarizes and concludes.

2. RELATED WORK
There exists much previous work in using NMR to improve

a computation structure’s reliability. [13] This includes clas-
sical fault-tolerant systems using NMR, such as the Sperry
Univac 1100/60, Tandem S2, C.vmp, Software Implemented
Fault Tolerance(SIFT), and FTMP systems. [14–16] The
C.vmp system utilized triplicates and voting whenever ac-
cesses to the bus occurred. The FTMP divided programs
into tasks which each ran on a processor/scratch pad pair
(with three copies of memory), where values are voted on
before being written to or from the scratch pad. Many
of these previous fault-tolerant systems used similar tech-
niques, including physical isolation to prevent fault propa-
gation, tightly synchronized logic, adaptive policies in the
case of failures.

More recent work commonly uses a DMR approach to
processor logic, such as DIVA [17] which utilizes cores in
a leader-checker fashion, such that the simplified more re-
liable core acts as a checker and runs behind the leader,
verifying its operation dynamically to protect against tran-
sient faults. The slack between the cores is compensated
for by the leader providing prefetch and branch prediction
results to the trailing core. Tandem Integrity S2 is a classic
commercial example of a TMR type system which utilizes
multiple layers of dual redundancy on system components
and triple redundancy for processor logic. [18] IBM Power6
is also another commercial example of lockstep execution
between two cores on-chip. [19] All of these approaches are
limited in their extension to a flexible NMR framework as
the cores are tightly coupled together.

The Reunion approach [20] introduces an architecture
for utilizing DMR groups on a chip multiprocessor. They
also describe techniques allowing overheads associated with
coherence complexities to be reduced, termed relaxed input
coherence. However, their approach is also limited by the
use of tightly statically coupled cores. Their DMR groups,
similar to previous commercial examples, also used short
comparison intervals.

There is some work involving the use of a CMP with the
capability to reconfigure groups similar to the work in this
paper. Dynamically Coupled Cores(DCC) [21] utilizes a
shared bus for the communication fabric and devises ba-
sic protocols for supporting the dynamic coupling of DMR
groups. Due to bandwidth constraints though, they are
restricted to using only large comparison intervals (3000-
10000 cycles). Their technique is limited in both the er-
ror rates and degree of NMR groups supported. Dynamic
DMR(DDMR) [22] attempts to solve this problem by uti-



lizing a partitioned design with a ring network in each par-
tition. DDMR also uses short validation intervals ( 128 in-
structions or 24 stores). This partitioned strategy allows
for microarchitecture/network designs, such as a ring buffer,
which reduce the overall communication latency within the
voting groups. As discussed below though, in face of het-
erogeneity, these designs can be very limited in aggregate
performance and throughput.

Finally, there has been a study on applying the DCC ap-
proach to a multi-core environment using a traditional net-
work on chip mesh. [23]. They find similar high overheads
to using the basic DCC approach with a direct network.
They also use larger comparison intervals, which require
more complex protocols for synchronization and input co-
herence between cores within a DMR group. Further, they
find that the overhead associated with their synchronization
protocols are a limiting factor to the scalability of the DCC
approach on a CMP.

The use of combining networks has also been studied in
previous systems [24]. The micro-architectural approach
for in-network fault tolerance similarly includes additional
logic in the network to gather aggregate results and support
bandwidth/latency tradeoffs. However, our approach also
supports further integration with the reliability framework
in order to allow for more efficient network architectures and
voting/checkpointing protocols (including proactive check-
point deallocation and dynamic constitution).

3. REQUIREMENTS OF AN NMR FRAME-
WORK FOR ERROR-PRONE CMPS

Designing an NMR framework for error prone CMPs starts
with the question of dynamic redundancy vs static redun-
dancy. Static NMR for CMPs may be too expensive in
terms of area and power in face of high error rates due
to the large number of cores required to meet system re-
liability targets. Dynamic redundancy, on the other hand,
allows dynamic performance/power/reliability tradeoffs and
is, therefore, more attractive under such scenarios.

The second desirable feature of an NMR framework for
error prone CMPs is dynamic constitution. Dynamic con-
stitution refers to selecting an arbitrary core on the chip to
constitute an NMR group. As opposed to dynamic redun-
dancy (or dynamic coupling [21]), the composition of cores
of an NMR group in a dynamic constitution framework can
change completely over time. Dynamic constitution is useful
for several reasons. First, it allows scheduling around cores
with permanent faults. For example, in the face of per-
manent faults, if NMR groups are statically constituted and
the number of failed cores in an NMR group drops below the
threshold to meet the basic reliability target, the rest of the
cores in the group are essentially rendered useless. Figure
2 illustrates this type of behavior by showing the number
of working NMR groups over time with a CMP of N=90
cores divided into multiple partitions and a reliability tar-
get requiring 3 redundant cores for each thread. Each core is
assumed to have a permanent failure rate which is normally
distributed (µ = 500, σ2 = 300) and coupling is allowed
only with cores belonging to the same partition (i.e., when
one of the cores belonging to an NMR group fails, a new
NMR group can be formed only with a core within the same
partition). Figure 2 shows that a system with no partitions
(i.e., where any core can join into an NMR group with any

other core on the chip) shows the best overall throughput
over the period shown.
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Figure 2: Throughput Degradation due to normally
distributed permanent faults. N=90, NMR=3, Faults
Normal(µ = 500,σ2 = 300)
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Figure 3: Normalized expected performance with op-
timal scheduling. N=90, NMR=3. Systems with finite
partition sizes can drastically limit the overall through-
put and expected performance.

Similarly, dynamic constitution facilitates better schedul-
ing for throughput in face of heterogeneity due to manu-
facturing variations as well as core-level voltage/frequency
scaling. For example, since performance of redundant cores
are dictated by the slowest core in group, better overall
throughput can be achieved when the system has flexibil-
ity in scheduling of the NMR groups (i.e., the cores used to
constitute an NMR group). Figure 3 shows an example of
how expected single thread performance is affected by the
use of smaller partitions restricting the scheduling of NMR
groups based on relative performance. Each core’s perfor-
mance (IPC) is normally distributed(µ = 100, σ2 = 50) and
cores are optimally scheduled within each partition to maxi-
mize the expected performance of threads within the group.
Figure 3 plots one sample path for normalized expected per-
formance with alternative partition sizes. The system with
no partitions shows much greater expected single thread per-
formance versus the partitioned systems, assuming an ideal
scheduling mechanism.

Dynamic constitution may also be helpful in face of ther-
mal constraints (to prevent NMR hotspots) and multipro-
gramming.



Yet another characteristic we want an NMR framework
for error-prone CMPs to have is low voting latency. The
equation below illustrates a simple relationship between the
voting frequency, voting latency, and error rate in determin-
ing the associated system overhead. Assuming the voting
group’s recovery rate is exponentially distributed ( exp(λ)),
and the following primary parameters:

• Cf =Checkpoint Frequency.

• CVt = The latency of tasks associated with the relia-
bility framework per comparison interval (i.e. check-
pointing, voting, input coherence).

• To = Random variable representing the total execution
time between checkpoints, which is a function of the
number of re-executions, Cf , and CVt.

We then find that the expected overhead (E[Or]) for a single
unit of computation of length 1/Cf as:

E[Or] = Cf ∗ E[To] − 1 = eλ/Cf
∗ (1 + Cf ∗ CVt) − 1

With a fixed recovery rate and reliability framework la-
tency, the optimal checkpointing frequency(for the least sys-
tem overhead) can then be found and is shown below.

CkptFreqoptimal = λ +
p

λ2 + 4λ/CVt

Figure 4 utilizes these equations to plot the expected
performance overhead of voting for different voting laten-
cies for several potential error rates (10−4

−10−7) that have
been reported in literature [8–10] for post-CMOS and na-
noelectronic systems. These error rates are meaningful for
probabilistic SoCs and stochastic architectures [3,4] as well.
For each recovery rate (which is likely a fraction of individ-
ual core error rates, as some faults may be masked) shown
on the x-axis, the optimal checkpointing frequency is used
(from above equation). The results show that the voting
latency represents a major restriction to scaling for error-
prone CMPs, especially as longer delays are incurred be-
tween cores with the further technology scaling, increased
core counts, and larger NMR sizes.
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Figure 4: Voting module overhead vs error rate.
The voting latency bounds the optimal comparison
frequency, limiting how much the framework’s over-
head can be minimized.

Finally, an NMR framework for error prone CMPs needs
to be bandwidth-sensitive. Figure 5 illustrates one situa-
tion in which bandwidth can become a bottleneck for future

error rates. Assuming an optimal square mesh, the num-
ber of packets injected into the network for one comparison
interval are easily calculated; as a finite number of votes
from each core are sent to the leader. And a finite num-
ber of response messages are returned from the leader in
a single interval. This constant is multiplied by the ex-
pected number of re-executions due to errors. Figure 5
shows the approximate utilization of the routers in the NoC
based on the NMR size and comparison interval (Check-
pointing frequency=200) Even for smaller numbers of NMR
sizes the approximate bandwidth consumed by the voting
framework alone can be significant (almost 25%). However
with increased NMR sizes and non-optimal NMR mappings
on chips with larger total numbers of cores, the bandwidth
consumed can become even larger, (almost 40-50%).
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Figure 5: Approximate NoC Utilization. The vot-
ing process saturates the NoC bandwidth as more
cores are included in the NMR group and as delays
increase from additional routing on-chip.

4. PROPOSED FRAMEWORK
In this section, we describe an NMR framework for error

prone CMPs that supports dynamic constitution, in-network
fault tolerance, and proactive checkpoint deallocation. Be-
fore we describe the three optimizations, we discuss the basic
reliability logic that the framework uses.

4.1 Basic Reliability Logic
The baseline reliability logic includes a simple hardware

voter distributed throughout the mesh, shown in figure 6.
The sphere of replication includes the core and local L1

cache. As opposed to software oriented NMR, memory is
not replicated and all requests to lower parts of the memory
hierarchy are validated before being committed. [25]. Val-
idation occurs by comparing a CRC hash of the processor
states. The NoC, voters, checkpoints are all assumed to be
of high reliability.

A multi-cycle version of the voting module is shown in
figure 7 consisting of a basic FSM for voter control, a regis-
ter file for data and statistics collection, and an adder used
to tally the results. A register file is used to hold the tem-
porary vote values as they arrive from the children cores.
They are routed over the same network that other on-chip
traffic utilizes. As vote values are passed to the hardware
voter they are stored into the vote register file. Upon re-
ceipt of all messages the analysis phase begins by utilizing
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Figure 6: Basic tile included in reliability frame-
work for CMP. Configurable logic associated with
voting and reliability management resides between
local processing resources and the network-on-chip
interface.

the array of comparators to compare all values and tally the
total counts for each value. Unique values are also recorded
with control bits associated with each entry in the register
file. Upon checking all entries, the FSM utilizes the Deci-
sion/Selection logic to determine whether a quorum is met
and what actions should be taken for each core (continue,
roll-forward, roll-back) Various policies and other informa-
tion can be utilized by the decision/selection unit to deter-
mine what actions to take. The FSM then creates control
packets communicating the actions to the children of the
NMR group.

Conversely, a single cycle implementation utilizing a sort-
ing network implemented as a butterfly network, shown in
figure 8, could also be used. However, since the vote values
are arriving asynchronously, vote values can also be ana-
lyzed in parallel with the time period in which the leader
is waiting for receipt of all the children results. Hence, the
vote register file and the comparator array function essen-
tially as a Content-Addressable-Memory(CAM). The deci-
sion/selection unit can then determine the result without
any delay after receipt of the last vote value.

The hardware voters also contain basic reliability man-
agement which maintains strict control over its locally asso-
ciated core. This includes the ability to stall the core and
L1 cache, disallowing any data to pass to external resources.
The reliability manager also contains the ability to save lo-
cal processor and L1 state as well as transfer remote state to
the core and restart execution. The reliability management
also is coupled to the local core to detect exceptions or halts.
When these scenarios are detected the leader is signaled so
appropriate action can be taken to recover. Additionally,
the voter has an integrated timer/heartbeat mechanism to
detect when a core has potentially stalled.

The cache itself is modified to maintain a ”verified” bit,
along with some slight coherence modifications discussed in
[21] to account for redundant executions. When unverified
lines are evicted a vote is triggered within the group. Upon
verification, all cache lines in the group are marked as ver-
ified. Additionally, hardware storage for saving processor
state and L1 cache are also included in the tile. In the
baseline, checkpoints/recoveries are implemented by a basic
direct copy, however future work involves the extension of
the hardware checkpoint functionality for reducing storage
capacity based on analysis of execution history.

4.2 Dynamic Constitution
Hardware voters have software-accessible configuration bits

(see Figure 8). Dynamic constitution is supported by al-
lowing the OS/runtime to manage the configuration of the
NMR group’s voters. Also, the routers along the static links
between cores can be configured, assuming a deterministic
routing policy (X-Y routing).

For the core-voter pair assigned as the leader, the basic
configuration bit settings include the mode(leader), Ids for
assigned children, initial timeout values on waiting for votes
and the voting policy. For the cores assigned to the leader,
their basic configuration settings include the mode(child),
Id of their assigned leader, and threshold values used to
trigger voting on certain events (number of writes, cycles,
etc). Upon a triggered vote, the local core’s reliability man-
ager(RM) creates a vote message with the assigned leader
as it’s destination. The message can then be queued by
the router similar to other outgoing traffic. Based on the
leader’s initial configuration, the router can then receive chil-
dren messages, or make decision on events when cores are
non-responsive.

After arbitration is completed by the voter a decision is
made based on a given policy on how to continue. For ex-
ample, if a majority of results match, the leader then sends
control messages to each of the children signaling them to
checkpoint and continue. If a majority is not reached, re-
covery is implemented by signaling all cores to rollback to a
previously saved state.

Current objectives and system/environment conditions de-
termine the best degree of redundancy and the actual map-
ping of cores within the NMR group.

4.3 In-network Fault Tolerance
The first optimization, in-network fault tolerance, includes

aggregation logic within each router. The additional logic
buffers and analyzes the vote messages coming into a router
and forwards a smaller number of messages that represent
the unique values being voted on and their current count.
For example, if a router receives three vote messages, with
values A, A, and B, it will forward two messages - (A,2) and
(B,1). If the three vote messages have values A, A, and A,
the router will forward one message - (A,3). So, the opti-
mization utilizes the expected redundancy in vote messages,
to reduce some of the blocking overhead incurred at the
leader, and also provide a mechanism to trade-off network
bandwidth with latency.

To implement in-network fault-tolerance, the routers are
initially programmed with the number of expected votes for
a given group, that may pass through a router. The router
detects ‘vote‘ related flits in parallel with the virtual channel
and switch allocation stages. Multiple CAMs for each voting
group (or a partition-able CAM) are used to cache the tem-
porary vote values, shown in figure 9. The value of the vote
is used as the address to the CAM, and the count is used as
the data stored in the table. As values are matched in the
CAM, the count is simply added to previous count. Upon
receiving the expected number of votes for a given NMR
group, the voter control within the router creates messages
to forward on the contents of the CAM table in the same
format. The reduction network (we call the NoC augmented
with the aggregation logic a reduction network) can also be
adjusted to change the degree at which bandwidth is traded
off with latency, by adding limits to the time routers wait
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for additional vote messages of the same voting phase before
forwarding aggregated results onward.

Note that by incorporating the voter register file and as-
sociated comparison logic in the router as multiple CAMs
or a single partitionable CAM, the router can participate
in multiple concurrent voting phases. Also, this optimiza-
tion does require an additional byte of control data to be
communicated, associated with the number of values seen
so far. However, this overhead is minimal compared to the
bandwidth reduced due to aggregation.

4.4 Proactive Checkpoint Deallocation
The second optimization includes additional checkpoint

buffer storage in each core, in order to partially hide the
requirement that cores wait until receiving verification to
continue on with execution.

For example, the proactive checkpoint deallocation can
be used when each core has three local checkpoint buffers.
Each of the cores and routers in this case appends two more
bytes of control information along with the vote message.
These two bytes contain the unique id of the core which
currently holds the checkpoint associated with the particu-
lar vote value. The other byte is set by the originating core

Voter Control

Virtual Channel 
Allocator

Switch Allocator

Vote Tables (CAMs)

Input Bufers

(Val,Cnt)

Router

Figure 9: Basic router architecture including addi-
tional voting related logic.

and contains the current number of used checkpoint buffers.
The vote tables (CAMs) within each router are extended
to maintain the current core assigned to checkpoint (and its
total number of checkpoints) for every unique value in table.
As vote values are matched within the reduction network,
the number of checkpoints stored at the originating core for
the currently arriving vote and the previously received vote
stored in the vote table are compared. The lesser of the two
is chosen and the router then sends a ‘checkpoint deallo-
cate‘ message to the core id associated with the lesser of the
checkpoint counts. The process continues, potentially deal-
locating more checkpoints depending on values received, and
with the guarantee that at least one core will always store a
checkpoint associated with a unique vote. This then allows
recovery by rolling state back to this unique state, in the
case the overall vote fails to reach agreement. In the ideal
case all but one of the cores are allowed to deallocate their
particular checkpoint and continue on with execution, while
one lone core must wait until receipt has been received from
the leader that the vote succeeded. So although the NMR
group is dictated by the slowest core, in aggregate, the pol-
icy above will automatically adapt to various performance
variations and previous checkpoint histories to minimize the
aggregate time spent waiting for verification over multiple
comparison intervals.

As vote values are matched within the reduction logic the
voter can make a local decision and send control back to the
corresponding core to deallocate its checkpoint and continue.
Using this scheme the actual checkpoints are more efficiently
balanced across the group, reducing the buffer size required
for each core. The disadvantage to this approach though,
is the increased potential penalty for roll-forward events(or
remote transfers). Since these events are not as common as
other framework events (less than 5%), the penalty from re-
mote transfers can be amortized in the total recovery costs.
Similar to the first optimization, additional marginal band-
width/storage is required for communicating the number of
allocated checkpoints and the core which is currently storing
a particular checkpoint for a phase of execution. This allows
for a simple load balancing policy to schedule checkpoints
on the core with more buffer slots available.

There is no additional configuration setup for this opti-
mization, although some policy variations could be included



in the basic configuration.

5. METHODOLOGY
The M5 simulator [26] was used to implement the pri-

mary components of the reliability framework, and a set of
workloads from the Spec benchmark suite was simulated on
top of the framework. Aspects of the reliability framework
that were modeled carefully included the voting logic associ-
ated with aggregation and mutual exclusion policies, which
were implemented in a simple router architecture included in
the simulator. The vote and control messages are 8 bytes.
Recovery mechanisms for rolling back to checkpoints were
implemented by saving the processor state, L1 dcache, and
I/O state. Additionally, we included a simple modification
to the cache reflecting the status of verification for lines, and
triggering voting.

Our experiments used a mesh topology as the intercon-
nect, with regular dimensions and optimal leader placement
minimizing hops. Multiple parameter values were simulated
for the leading hardware voter – latency (1-2n cycles), Vote
Bandwidth (4-100 bytes), and various triggers(write back,
write limit = 2-128, cycle limit). However, we present most
results for relatively short comparison intervals due to ex-
pected error rates and a reduction in size/complexity re-
quirements for the checkpoints per core.

Basic error behavior was simulated by injecting faults as
single bit flips into the actual data being compared. Fault
arrivals to each core were modeled as a Poisson process (time
between faults being exponentially distributed) Given a fault
at time t, a single bit flip, which is uniformly distributed, is
then applied. This model guarantees the injection of only
single bit errors at a time per core, similar to other hard-
ware focused fault injection campaigns. The impact of more
complex error scenarios on the system will potentially lead
to further opportunity for performance improvement from
in-network fault tolerance . Additionally, the experiments
included in the following section are based on using redun-
dancy with single threaded benchmarks. The framework
is generalized to multi-threaded workloads as well though.
And these types of workloads will also further exacerbate
reliability framework related overheads. (i.e. ensuring that
all external inputs to redundant groups are coherent.)

Some of the basic parameters used in the simulations are
shown below:

Component Parameter
Interconnect Topology 2-Mesh

Routing X-Y Routing
Channel Width 8 bytes

Processors Alpha 21264
Clock Frequency 2GHz
L1 Cache per tile 32KB ICache, 64KB DCache

L2 Cache 4MB
Execution Inorder

Voting Policy Plurality

6. EXPERIMENTAL RESULTS
In this section, we analyze the potential benefits from us-

ing a reduction network and from proactive deallocation of
checkpoints.

6.1 Fault Free Operation
Figures 10 and 11 show the relative speedups over the

baseline for the reduction network and proactive checkpoint
deallocation technique (which reduces most of the latency
overhead). In most scenarios the reduction network does
not show larger speedups (> 10%). The benefits of the first
optimization predominantly come from a reduction in the
overall network bandwidth. With fault free simulations, the
total number of bus cycles occupied by vote packets using
the reduction network is reduced approximately 7% − 34%,
from 4 to 32 participating cores.

The figures ( 10 and 11) also illustrate the effect of delay
at the leading hardware voter for NMR analysis and con-
trol message creation. With a delay of 2n cycles (n is the
number of cores in an NMR group) in the leading voter, the
optimizations exhibit greater speedups due to the increased
penalty included in the voting process.
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Figure 10: Performance speedups over the baseline
for the first two optimizations (w/ WL=2, Voter la-
tency=1). The x-axis is divided between each of the
benchmarks with varying number of cores for the cor-
responding benchmark shown in between the bench-
marks.
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Figure 11: Performance speedups over the baseline
for the first two optimizations (w/ WL=2, Voter la-
tency=2n). The x-axis is divided between each of the
benchmarks with varying number of cores for the cor-
responding benchmark shown in between the bench-
marks.

Additionally, we see that although the reduction network
imposes additional delays at each network hop which aggre-
gates values, the reduction network more than compensates
for this by the decrease in time spent on forwarding addi-
tional vote messages along the network to the leader. (in
average or best case error scenarios).

Using a write limit (the number of writes after which vot-



ing is triggered) greater than 30 reduces the fault free per-
formance improvements to about 2− 15% across the bench-
marks. We also performed simulations using a write limit
of 30, with alternative comparison bandwidths (i.e. 8-100
bytes, with 100 bytes showing 10 − 35% improvements over
3 − 8 cores). Figure 12 shows performance speedups for a
slightly more moderate comparison rate (write limit of 10).
Similar results are seen as in Figures 10 and 11 So these
optimizations have the greatest affect on systems with short
validation intervals due to high error rates or additional re-
strictions on the size/complexity of actual checkpoints.
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Figure 12: Performance speedups for the reduction
network and proactive checkpoint deallocation with
a write limit=10 and n=3,8

Figure 13 shows how the effective comparison rate changes
when using the writeback trigger alone. For the most part ,
because comparison rates we simulated (controlled by write
and time limits) were relatively high, not very many write-
back triggered votes occurred. With lower comparison rates,
we observed that the associativity of the cache had a much
larger impact in determining the effective rate of compari-
son.

Figure 14 shows how the effective buffer size is a small
proportion of the actual buffer size allocated. For these eval-
uations the biggest speedup came from having 2-3 additional
checkpoints slots per core. Results shown in Figure 12,
for the proactive checkpoint deallocation optimization using
only three available checkpoint buffers also confirm that a
small set of checkpoint buffers is sufficient to provide good
performance gains for these types of environments.

6.2 Faulty Operation
We now discuss the operation of the framework in the face

of simulated errors and recoveries.
Figure 15 shows the average performance speedups over

a small sample set. Most benchmarks on average had an
increase in speedups in the face of faults and recoveries. We
found that performance depends not only on the number
of additional votes triggered due to errors, but also on the
error patterns upon which recoveries were based (because
recovery penalties associated with re-execution depend di-
rectly on the error pattern). This stresses the importance
of using an appropriate combination of triggers, to ensure
proper comparison intervals with good fault detection char-
acteristics.

Finally, Figure 16 shows how much the average voting
latency across executions decreases with the reduction net-
work. The graph shows that reduction network continues to
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Figure 13: Effective comparison rate in terms of num-
ber of writes using the write back trigger alone.
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ity with fixed sizes. In most cases the average buffer
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very limited decrease in performance
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Figure 15: Performance speedups for the reduction
network in the face of faults and recovered execu-
tions.

provide performance benefits even in face of errors.

7. CONCLUSIONS
For future technologies which are inherently error prone,

due to various deep submicron challenges, using higher de-
grees of NMR may become essential. Moreover, due to many
additional sources of heterogeneity across the cores on the
chip, the ability to dynamically constitute an NMR group
with arbitrary cores on chip may also be needed. In this pa-
per, we presented a scalable NMR framework for error prone
CMPs. The proposed framework supports dynamic consti-
tution of NMR groups. The framework also recognizes that
large-scale NMR can be severely limited by the latency and
bandwidth overheads included with inter-NMR and intra-
NMR group communications. To that effect, the frame-
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Figure 16: Decrease in average voting latency for
the reduction network.

work supports in-network fault-tolerance that minimizes the
bandwidth overhead of NMR. The framework also supports
proactive checkpoint deallocation that allows reduced la-
tency for NMR-based fault tolerance. Overall, we found
that the proposed framework provides good performance im-
provements across future operating conditions characterized
by adverse error behavior and the trend toward increasingly
parallel CMPs.

We believe that the effectiveness of our framework (and
optimizations) in achieving greater availability is only going
to increase as the the number of cores on chip and within
the NMR groups scales.
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