
In Proceedings of the 37th International Symposium on Microarchitecture, December, 2004

Balanced Multithreading: Increasing Throughput via a
Low Cost Multithreading Hierarchy

Eric Tune Rakesh Kumar Dean M. Tullsen Brad Calder
Computer Science and Engineering Department

University of California at San Diego
�etune,rakumar,tullsen,calder�@cs.ucsd.edu

Abstract

A simultaneous multithreading (SMT) processor can issue
instructions from several threads every cycle, allowing it to
effectively hide various instruction latencies; this effect in-
creases with the number of simultaneous contexts supported.
However, each added context on an SMT processor incurs a
cost in complexity, which may lead to an increase in pipeline
length or a decrease in the maximum clock rate. This pa-
per presents new designs for multithreaded processors which
combine a conservative SMT implementation with a coarse-
grained multithreading capability. By presenting more virtual
contexts to the operating system and user than are supported
in the core pipeline, the new designs can take advantage of the
memory parallelism present in workloads with many threads,
while avoiding the performance penalties inherent in a many-
context SMT processor design. A design with 4 virtual con-
texts, but which is based on a 2-context SMT processor core,
gains an additional 26% throughput when 4 threads are run
together.

1 Introduction

The ratio between main memory access time and core
clock rates continues to grow. As a result, a processor
pipeline may be idle during much of a programs execution. A
multithreading processor can maintain a high throughput de-
spite a large relative memory latencies by executing instruc-
tions from several programs. Many models of multithreading
have been proposed. They can be categorized by how close
together in time instructions from different threads may be ex-
ecuted, which affects how the state for different threads must
be managed. Simultaneous Multithreading [31, 30, 12, 33]
(SMT) is the least restrictive model, in that instructions from
multiple threads can execute in the same cycle. This flexibil-
ity allows an SMT processor to hide stalls in one thread by
executing instructions from other threads. However, the flex-

ibility of SMT comes at a cost. The register file and rename
tables must be enlarged to accommodate the architectural reg-
isters of the additional threads. This in turn can increase the
clock cycle time and/or the depth of the pipeline.

Coarse-grained multithreading (CGMT) [1, 21, 26] is a
more restrictive model where the processor can only execute
instructions from one thread at a time, but where it can switch
to a new thread after a short delay. This makes CGMT suited
for hiding longer delays. Soon, general-purpose micropro-
cessors will be experiencing delays to main memory of 500
or more cycles. This means that a context switch in response
to a memory access can take tens of cycles and still provide
a considerable performance benefit. Previous CGMT designs
relied on a larger register file to allow fast context switches,
which would likely slow down current pipeline designs and
interfere with register renaming. Instead, we describe a new
implementation of CGMT which does not affect the size or
design of the register file or renaming table.

We find that CGMT alone, triggered only by main-
memory accesses, provides unimpressive increases in per-
formance because it cannot hide the effect of shorter stalls
in a single thread. However, CGMT and SMT complement
each other very well. A design which combines both types of
multithreading provides a balance between support for hiding
long and short stalls, and a balance between high throughput
and high single-thread performance. We call this combina-
tion of techniques Balanced Multithreading (BMT).

This combination of multithreading models can be com-
pared to a cache hierarchy, which results in a multithreading
hierarchy. The lowest level of multithreading (SMT) is small
(fewer contexts), fast, expensive, and closely tied to the pro-
cessor cycle time. The next level of multithreading (CGMT)
is slower, potentially larger (fewer limits to the number of
contexts that can be supported), cheaper, and has no impact
on processor cycle time or pipeline depth.

In our design, the operating system sees more virtual con-
texts than are supported in the core pipeline. These virtual
contexts are controlled by a mechanism to quickly switch be-
tween threads on long latency load misses. The method we

1

propose for adding more virtual contexts does not increase the
size of the physical register file or of the renaming tables. In-
stead, inactive contexts reside in a separate memory dedicated
to that purpose, which can be simpler and far from the core
as compared to a register file, and will not be timing critical.
Further, those threads that are swapped out of the processor
core do not need to be renamed, which avoids an increase in
the size of the renaming table. This architecture can achieve
the throughput near that of a many-context SMT processor,
but with the pipeline and clock rate of an SMT implementa-
tion that supports fewer threads. We find that we can increase
the throughput of an SMT processor design by as much as
26% by applying these small changes to the processor core.

This paper is organized as follows: Section 2 discusses
related prior work. Section 3 presents the architecture and
mechanisms for combining SMT and CGMT. Section 4 dis-
cusses our evaluation methodology. Results are presented in
Section 5.

2 Related Work

There has been a large body of work on the three primary
multithreading execution models. Fine-grained multithread-
ing architectures [24, 2, 10, 16] switch threads every proces-
sor cycle. Coarse-grained multithreading [1, 21, 26, 18, 5]
(CGMT) architectures switch to a different thread if the cur-
rent thread has a costly stall. Simultaneous multithread-
ing [31, 30, 12, 33] (SMT) architectures can issue instructions
from multiple threads simultaneously.

2.1 Coarse-Grain Multithreading

The Sparcle CPU [1] in the Alewife machine implements
CGMT, performing a context switch in 14 cycles (4 cycles
with aggressive optimizations). The Sparcle architects dis-
abled the register windows present in the Sparc processor
that they reused, and used the extra registers to support a
second context. The Sparcle processor was in-order, with a
short pipeline and did not perform register renaming. The
IBM RS64 IV processor [5] supports CGMT with 2 threads,
and is in-order. The RS64 designers chose to implement only
two contexts, which avoided any cycle-time penalty from the
additional registers. For the processors we seek to improve,
which have large instruction windows backed by additional
registers, the register file access time is much more likely to
be on the critical timing path. Therefore, we present a differ-
ent approach to context switching.

Waldspurger and Wiehl [32] avoid expanding the register
file in a CGMT architecture by recompiling code so that each
thread used fewer registers. Mowry and Ramkissoon [18]
propose software-controlled CGMT to help tolerate the la-
tency of shared data in a shared-memory multiprocessor.

They suggest compiler-based register file partitioning to re-
duce context-switch overhead. Horowitz, et al. similarly sug-
gest using memory references which cause cache misses to
branch or trap to a user-level handler [13]. Our approach uses
lightweight hardware support to make context switches faster
than would be possible purely using software, and does not
require recompilation.

2.2 Simultaneous Multithreading

Simultaneous multithreading can increase the utilization
of the execution resources of a single processor core by ex-
ecuting instructions from different threads at the same time.
However, each additional simultaneous thread expands struc-
tures whose speed may directly affect performance, in partic-
ular the register file. To reduce the incremental cost of addi-
tional threads in an SMT processor, Redstone, et al. [20] pro-
pose partitioning the architectural register file. Lo et al. [17]
propose software-directed register deallocation to decrease
dynamic register file demand for SMT processors. Both [20]
and [17] require compiler support. Multi-level register file or-
ganizations reduce the average register access time [4, 8, 3].

Register file speed is a function of the number of ports,
as well as the number of registers it contains. A processor
with a high issue width requires a register file with many
ports to avoid contention. The port requirements can be re-
laxed [19, 14, 27], but that requires additional hardware to
arbitrate among the ports.

Tullsen and Brown [29] note that very long latency mem-
ory operations can create problems for an SMT processor.
They suggest that when a thread is stalled waiting for a mem-
ory access, the instructions after the miss should be flushed
from the pipeline, freeing critical shared execution resources.
Our scheme inherently provides the same functionality. How-
ever, their proposal fails to free the most critical shared re-
source – thread contexts. We compare our processor designs
against an SMT processor which implements their flushing
mechanism. Our results show that freeing resources being
held by a stalled thread is indeed very important; however,
making those same resources available to a thread that would
not otherwise have a chance to run is also important. Other
researchers have suggested more sophisticated flushing poli-
cies for SMT [6], which we do not evaluate. However, im-
provements to policies which control when to flush an SMT
processor can also be applied to controlling thread-swapping
in a BMT processor.

3 Architecture

In this paper, we use the term context to refer to the hard-
ware which gives a processor the ability to run a process with-
out operating system or software intervention. We use the
term thread to refer to a program assigned to a context by the

operating system. Because the BMT architecture we propose
exposes more contexts to the operating system than can be
active at once in the processor core, we distinguish between
physical contexts and virtual contexts.

The number of physical contexts, denoted �����, is the
number of threads which can have instructions in the pipeline
simultaneously, and is limited by the register file and renam-
ing table sizes. The number of virtual contexts, denoted
�����, is the total number of threads which are supported
at once, via CGMT. For an SMT-only processor, ����� �

�����. We refer to an SMT-only processor design as being
an SMT-� processor design when it has � contexts. For ex-
ample, the Pentium 4 is an SMT-2 processor. We refer to a
Balanced Multithreading design with����� physical contexts
and ����� virtual contexts as a BMT-�����/����� processor.

Because there are more virtual contexts than physical con-
texts in a BMT processor, some threads will be inactive at
any given time. An inactive thread can have a pending main
memory request, but, unlike an active thread, an inactive
thread does not have instructions in the pipeline nor does it
have values in the primary register file.

3.1 Firmware Context Switching

We propose a context switching mechanism which (1)
does not increase the size of the register file because archi-
tectural state of inactive threads is stored elsewhere, (2) does
not increase the number of ports on the register file, because
the save/restore instructions access the register file like ordi-
nary instructions, (3) does not affect the design of the renam-
ing table, because inactive threads have no instructions in the
pipeline, and (4) is considerably faster than a software con-
text switch by the operating system. This mechanism, which
we call firmware context switching, uses:

1. an exception-like mechanism to initiate a context switch
and to flush the pipeline,

2. a microcoded instruction sequence of special instruc-
tions to swap the register state of active and inactive
threads.

3. a separate buffer to hold architectural registers of inac-
tive threads,

4. a small amount of duplicated or additional hardware in
areas that should not be critical to performance.

We now describe the features of firmware context switching
in greater detail.

Detecting Load Misses and Flushing—When a load in-
struction needs to directly access main memory, a thread swap
may be initiated. A firmware context switch is not fast enough
to make thread switching profitable for loads which hit in a
second or third level cache, given current cache latencies. We
use a simple method to detect main memory accesses: if a
load has an execution latency over a certain threshold, the
load is assumed to be accessing main memory. When such

a load is detected, it is canceled, but its memory request re-
mains in the memory system. In the commit stage, the
load instruction will raise an exception when it is the old-
est instruction in its thread. Fetching from that thread stops,
instructions from that thread are flushed, the PC of the can-
celled instruction is saved, and the register map is restored
to point to the proper state. However, instead of jumping to
a trap handler, control is transferred to a microprogrammed
instruction sequence.

One side effect of canceling an instruction, as we do with
long latency loads, is that the possibility of livelock is intro-
duced. Kubiatowicz gives a thorough treatment of these is-
sues in [15]. To avoid livelock in our simulations, we require
that a thread commit at least one instruction before it can be
swapped out.

Microprogrammed Context Switch—After a thread has
been flushed, instructions are fetched from a microcode con-
trol store. This microprogram consists of (1) a sequence of
store-like rsave instructions, (2) a special thread-switch in-
struction, and (3) a sequence of load-like rrestore instruc-
tions. Each of the rsave and rrestore instructions is re-
named, issued, and executed on an integer unit like a nor-
mal instruction. They are like a load or store instruction
in they have one register operand, but they do not access
programmer-visible memory space or undergo address trans-
lation. Instead they access a special buffer, the Inactive Reg-
ister Buffer (IRB), which is described below. The address in
the IRB is implicit given the operand and thread associated
with an rsave/rrestore instruction. An unoptimized mi-
croprogram would have one rsave and one rrestore in-
struction for each architectural register.

We add two optimizations to this microcode sequence
which reduce the number of instructions in a context switch.
First, a Dirty Register Mask (DRM) tracks which architec-
tural registers have been modified by committed instructions
since the last thread swap. The microcode sequencer uses
this bitmask to selectively generate rsave instructions only
for registers which have been modified. The correct value
of unmodified registers is still in the IRB. For the short times
that threads are often swapped in, this can significantly reduce
the number of rsave instructions. Second, for those bench-
marks which never use floating point registers, the floating
point registers are not restored. Operating systems already
use this technique to shorten software context switches. Both
techniques shorten the time to swap threads and reduce con-
tention for functional units with other active threads.

Duplicated Hardware—While registers are saved and re-
stored on a context switch, some small bits of hardware can
simply be replicated for each virtual context. These include
the branch global history register, the return stack, and pro-
cessor control registers, such as the page-table base register
and floating-point control register. Each of these resources,
which we expect are not likely to be on a critical circuit path,

would need to be accessed through a multiplexer which would
be controlled by a physical-to-virtual context mapping regis-
ter. The special thread-switch instruction changes this register
to correspond to the next thread to run.

Selecting the Next Thread—The next thread to swap in is
known before a thread swap occurs. We use a Least-Recently-
Run policy for selecting the next thread. When an active
thread is swapped out of the pipeline, the least recently run
thread is swapped in.

When a thread incurs a miss, but all inactive threads are
also waiting for memory, we found that a good policy was
to swap out the stalled thread, swap in the least recently run
thread, but gate (stall) fetch for that least recently run thread
until its data is returned from memory. This prevents the still-
stalled thread from introducing instructions into the proces-
sor that will interfere with other active threads. Eickemeyer,
et al., [9], refer to this policy as switch-when-ready in their
evaluation of a CGMT-only processor.

Inactive Register Buffer—Adding physical contexts to a
processor increases the total number of registers in the reg-
ister file, which is likely to affect the clock rate or pipeline
length. The access requirements for active and inactive reg-
isters are quite different. As a result of these differences, the
design constraints on the IRB are considerably relaxed, com-
pared to the register file. (We will use the term primary reg-
ister file to emphasize that we are not referring to the IRB.)
For a 4-wide processor design, the IRB has at most 4 ports
(read/write), compared to 12 ports (8 read and 4 write) for the
primary register file. It does not require bypassing, because
the same locations are never written and then read close to-
gether in time. Also, it can tolerate being placed far from the
core pipeline, and thus has fewer layout constraints. In regard
to the last item, we model a 10 cycle (pipelined) access time
for the IRB, implying its distance from the core is similar to
the L2 cache, certainly further than the L1.

In addition, firmware context switching is well-suited to
a processor with a unified register file for both architectural
registers and for uncommitted results, as in [34, 11]. In that
type of architecture, including those with separate floating-
point and integer register files, an architectural register is not
mapped to a fixed location in the register file, so saving or
restoring it involves first consulting the renaming table. The
alternative architecture, with a separate reorder buffer and
commit register file, may allow for greater hardware support
of context switching, but it requires a higher read bandwidth
on the reorder buffer for a given level of instruction through-
put, and is poorly suited to SMT.

Our firmware approach to context switching does not add
additional ports to the register file, since the thread switching
operations use the ordinary instruction path. In summary, the
inactive register buffer adds no complexity to the core of the
processor.

3.2 Time Required to Swap Threads

In our simulations, with the baseline BMT configuration, a
majority of firmware context switches take 60 cycles or less.
However, there is considerable room for variation. This sec-
tion describes the range of times required for each step of the
context switch.

25 cycles to detect main memory access—If a load in-
struction does not complete execution in 25 cycles, then it is
considered to be a main-memory access. This includes a 3 cy-
cle load instruction latency, a 14 cycle L2 latency, and several
extra cycles to account for contention when accessing the L2
cache. This is for the baseline memory architecture. For the
other memory designs investigated in Section 5.4, this thresh-
old is adjusted. In principle, this time could be reduced by an
early reply from the L2 tag array, or by consulting a load-
hit predictor. However, as we show in Section 5.6, switching
prematurely can decrease memory parallelism by missing the
opportunity to issue independent load misses in parallel with
the first miss encountered. The 60 cycle figure above does not
include these 25 cycles.

3–30 cycles to trigger flush—There is a 3-cycle minimum
delay to trigger a flush in our model. However, older uncom-
mitted instructions from the same thread may further delay
the flush. In our simulations, the flush occurs after 3 cycles
64% of the time, within 15 cycles 94% of the time, and very
rarely after more than 30 cycles. A flush could be triggered
before the canceled load becomes the oldest instruction in
its thread, but we found that the cost of unnecessary flushes
caused by wrong path instructions outweighed the advantage
of flushing sooner.

15 cycles for microcode to reach execute—Instructions
can be fetched from the microcode control store immediately
after the flush has been triggered. In the pipeline we model,
there are 15 stages between fetch and execute.
�10 cycles to issue rsave instructions—The micropro-

gram will contain 1–62 rsave instructions, depending on
the number of dirty registers. There is considerable varia-
tion between benchmarks. Overall, though, on 50% of thread
swaps, 20 or fewer registers had been modified, and on 90%
of thread swaps, 40 or fewer had been modified. The rsave
instructions compete to use the integer units with instructions
from other active threads, but in the best case, 40 rsaves
take 10 cycles to execute, 4 at a time.
�16 cycles to issue rrestore instructions—The mi-

croprogram concludes with 62 rrestore instructions to re-
store the registers of the new thread. These take at least
16 cycles to execute. For those 4 of the 16 benchmarks
which do not use floating-point registers, there are only 31
rrestores.
�10 cycles restore-use latency—After the micropro-

gram is fetched, but concurrently with the execution of the
rrestores, the processor fetches from the new thread. We

Fetch � 3 instructions per thread from � 2 threads each cycle
Branch prediction 64Kbit 2bcGskew Deep Pipeline 22 stages, 16
cycle misp. penalty
Out-of-order execution with 48/32/20 entry integer/fp/memory in-
struction queues, which may issue 4 integer/mem instructions (� 2
mem) and 2 fp instructions each cycle
Instruction Window supports 128 in-flight instructions�
Memory system
32k 4-way 3 cycle L1 Instruction and Data caches (2 acc/cyc)
64 byte linesize for L1 caches
64 entry DTLB / 48 entry ITLB, fully associative
256 entry second level Data and Instruction TLBs
128 byte linesize for higher-level caches
2MB 8-way 14 cycle L2 cache (1 acc/cyc)�
500 cycle memory access time�

�— Baseline parameter, different where noted.

Table 1. Simulated Processor Specifications.

model a 10 cycle latency for the rrestore instructions,
and the execution of the rrestore instructions is fully
pipelined. Depending on what registers are used first by the
new thread, there will be a 0–10 cycle delay. This could be
reduced by strategically reordering the rrestore instruc-
tions to match the order of their use by the new thread, based
on the instructions previously flushed. Of course, the new
thread may also incur an instruction cache miss.

3.3 Common Architecture

The parameters common to all processor designs are
shown in Table 1. We intend that these parameters represent
a reasonable processor design one or two process generations
from now, except that the cache sizes are somewhat smaller
than might be projected. We chose relatively smaller cache
sizes to match the memory footprint of the benchmarks we
use.

The baseline SMT processors we evaluate implements the
flush-on-cache-miss policy from [29], which makes more
room in the instruction window for instructions from non-
stalled threads. Thus, the miss detection and flushing capa-
bility required by BMT should not be viewed as an extra cost
of our design.

We model a software TLB miss handler mechanism close
to that used in the Alpha architecture [7] for all processor
designs. For some workloads, page-table walks due to TLB
misses represent a significant fraction of all main memory
accesses, and a fraction which increases as more threads are
run together. Therefore, we allow thread swaps to occur on
the loads in the TLB miss trap handler routine. A system
with a hardware TLB handler should be able to accommodate
thread-swapping as well.

Fast Forward
Name Code Input Instructions (����)

ammp 0 2000
art 1 -startx 110 7500
crafty 2 700
eon 3 rushmeier 100
galgel 4 5000
gap 5 185330
gcc 6 166 2100
gzip 7 graphic 39300
mcf 8 12600
mesa 9 1300
mgrid A 2100
parser B 400
perl C makerand 10000
twolf D 900
vortex E 2 6000
vpr F route 36100

Table 2. Benchmarks.

2A 01
2B 12
2C 23
2D 34
2E 45
2F 56
2G 67
2H 78
2I 89
2J 9A
2K AB
2L BC
2M CD
2N DE
2O EF
2P F0

Workload
� Name

3A 012
3B 345
3C 678
3D 9AB
3E CDE
3F 024
3G 68A
3H CEF
3I 135
3J 79B
3K DF6

Bench.�
Codes

4A 0123
4B 4567
4C 89AB
4D CDEF
4E 0246
4F 8ACE
4G 1357
4H 9BDF

6A 012345
6B 6789AB
6C ABCDEF
6D 0369EF
6E 147C28

(see Tbl 2)

8A 01234567
8B 89ABCDEF
8C 02468ACE
8D 13579BDF

10A 0123456789
10B 456789ABCD
10C 89ABCDEF01
10D CDEF012345

12A 456789ABCDEF
12B 012389ABCDEF
12C 01234567CDEF
12D 0123456789AB

16A 01234567
89ABCDEF

Table 3. Workloads.

4 Methodology

We evaluate each design alternative by simulation. For
each design, we simulate workloads of different sizes. For
each workload size, we present the average of several dif-
ferent workloads. Each of the workloads are comprised of a
subset of the SPEC2000 benchmarks.

We perform all simulations using a detailed, execution-
driven simulator, based on SMTSIM [28]. The simulator ex-
ecutes Alpha binaries which are compiled with the DEC C
(-O4) or Fortran (-O5) compiler. We added a software TLB
miss handler that closely models the Alpha architecture PAL-
Code TLB trap handler.

The speedup results we present are meant to be an estimate
of the overall improvement in throughput for a system which
continuously runs the 16 benchmarks shown in Table 2, as
compared to a single-threaded system. We simulate a portion
of each benchmark. With the assistance of SimPoint [22], we
select a starting point for simulation within each benchmark.
Using the multiple simulation point algorithm, we select a
phase in each benchmark that represents the largest amount
of execution.

We simulate several different workloads for each work-
load size, which represent a sampling of the space of possi-
ble workloads. The exact combinations used are shown in 3,
where each workload is described as a string of characters.
Each character represents a benchmark, as shown in the col-
umn labeled Codes in Table 2. For example, workload 2B
consists of 2 threads, art and crafty. The workloads are
selected so that each benchmark is included in more than one
workload at each workload size, and to reduce commonal-
ity between workloads without unduly increasing the number
of simulations. Beyond that, the combinations are selected
without any design.

In all simulations, after advancing each thread to the sim-
ulation starting point indicated in Table 2 using a checkpoint,
we performed a detailed simulation until ����� instructions
had been executed (where � is the number of threads in the
workload). When simulating multiple threads, each bench-
mark in a single workload will run for a different number of
instructions under different processor parameters. If there is
a large variation in performance of the running threads, this
will complicate interpretation of the results. Thus, we present
all performance results as weighted speedup [25, 29]. The
weighted speedup of a multithreaded workload is defined as
the sum of the speedups of each individual thread within the
workload over a baseline run (in this case single-thread exe-
cution). The speedup of a thread within a workload is defined
as its performance, in instructions per cycle (IPC), when part
of a multithreaded run, divided by its IPC when run by itself
over the same range of instructions. Thus weighted speedup
represents average relative progress on the workload. By con-
trast, other metrics, like total instructions per cycle, can artifi-
cially create the appearance of increases in performance when
more instructions are executed from a higher-IPC thread.

Each speedup we present for 2, 3, 4, 6, 8, 10 or 12 threads
at a time represents the average of 16, 11, 8, 6, 5, or 4 different
simulations, respectively, as shown in Table 3.

We use CACTI 3.2 [23] for modeling register access times.
Since CACTI 3.2 is designed to evaluate the access time of
caches, we discarded the tag path in the measures presented
here. Access times assume a 70nm process.

5 Analysis and Results

The number of physical contexts supported by a processor,
�����, affects the size of the physical register file and the re-
naming table, both of which are likely to affect the maximum
clock speed and pipeline length. This can degrade perfor-
mance, especially when one or few threads are run at a time.
In this paper, we use the number of physical registers, �����,
as a proxy for these other effects. The following subsection
examines the relationship between throughput and ����� for
different multithreading schemes. Also in this section, we
examine how BMT performs over a range of workload sizes

192256320384448512
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

 SMT−2

 SMT−3

 SMT−4

 SMT−6

 SMT−2 (no flush)
 SMT−3 (n/f)

 SMT−4 (n/f)

 SMT−6 (no flush)

 CGMT−2
 CGMT−3

 BMT−2/4
 BMT−2/6

 BMT−4/6
 BMT−4/8

 BMT−6/8
 BMT−6/12

W
ei

gh
te

d
Sp

ee
du

p
 (

re
la

tiv
e

to
 s

in
gl

e−
th

re
ad

 p
ro

ce
ss

or
)

Capacity of primary register file, R
phys

Figure 1. Speedup vs register file size.

and memory parameters. We also examine the importance of
firmware support for thread switching, and of store retirement
policies. We consider the effect of changing the delay to trig-
ger a thread swap after a miss. Finally, we quantify the effect
of a larger register file on overall performance.

5.1 Increasing Throughput Simply

Figure 1 illustrates the tradeoff between throughput and
physical register file size. The figure shows that, for a given
register file size, a BMT processor gets greater throughput
than an SMT processor.

The �-axis shows the number of registers in the physical
register file, �����. We define

����� � ����� ����	� ���
�

where ���	� � �� because the Alpha ISA defines 62 non-
zero registers, and, again, ����� is the number of physical
contexts. All designs assume a single unified physical register
file. The IRB is not included in �����, because it should not
be part of a critical circuit timing path. For all the results, ex-
cept where noted in Section 5.7, ��
� � ���, which permits
128 in-flight instructions across all threads. The �-axis shows
speedup relative to an otherwise equivalent single-thread pro-
cessor.

There are 4 groups of points to consider. The points la-
beled SMT-�, in the middle curve, show the speedup of SMT
processors running a workload of size �. For an SMT proces-
sor, � � �����, and ����� � �����, so we use ����� � �
to compute �����. The points labeled SMT-� (no flush), in
the lower curve, show the performance of a series of SMT
processor designs without a mechanism to flush a thread with

a long-latency load [29]. We present this to emphasize the
importance of having such a mechanism in any multithread-
ing processor with a shared instruction window. The points
labeled BMT-�/� represent BMT designs with ����� � �
and ����� � �, running workloads of � threads.

The BMT-2/4 processor gets 26% more throughput than an
SMT-2 processor, while running at the same clock speed with
the same pipeline depth. A 4-context SMT processor gets
17% more throughput when enhanced with BMT, assuming 8
jobs are ready to run.

We model the same pipeline depth and cycle time for all
SMT and BMT configurations. As additional hardware con-
texts are added, keeping the pipeline depth or cycle time con-
stant is unlikely, but the focus of our comparisons are be-
tween SMT and BMT configurations with the same number
of physical contexts. Because the speedup is not adjusted for
these effects, care should be taken when comparing points
with different values of �����. For example, while the 4-
context SMT processor shows 54% higher throughput than a
2-context SMT processor when 4 threads are available, differ-
ences in the pipeline and/or clock rate between those two de-
signs mean that the relative throughput of the 4-context SMT
processor will be lower than that number.

Even ignoring complexity differences, however, the ad-
ditional benefit of our approach is significant. Regardless
of whether a 2, 4 or 6 context SMT processor design is the
best choice for particular technology and performance goals,
BMT can be added to boost throughput without affecting
pipeline complexity. Additionally, these results assume all
physical contexts are filled. When there are fewer threads
than contexts, the advantage of the BMT designs over SMT
are even greater.

This figure also shows the performance of CGMT alone. It
provides only marginal gains over a single-threaded proces-
sor. Because of the high cost of moving state in and out of
the processor core, CGMT alone is of less value. But when
CGMT is added to SMT, the additional physical contexts can
do useful work while a context switch is underway, hiding the
cost of the switch.

5.2 Scalability of Balanced Multithreading

Adding more threads to a processor can increase perfor-
mance by increasing memory parallelism. However, with too
many threads, the benefits can be outweighed by the cost of
contention between threads. In this section, we investigate
how well different BMT designs perform, compared to SMT
designs, as the virtual-to-physical context ratio,�����������,
increases.

The firmware mechanism to swap threads in and out of
the processor core has two costs. First, the time required
to complete the context switch delays the start of execution
of the incoming thread. Second, the firmware save/restore

2 3 4 6 8 10 12 16
1

1.5

2

2.5

3

3.5

 BMT 2 firmware
 BMT 2 instant

 BMT 4 firmware
 BMT 4 instant

 BMT 6 frm.

 BMT 6 ins.

SMT−4

SMT−6

SMT−8

SMT−12
 SMT−16

W
ei

gh
te

d
Sp

ee
du

p

Number of threads in workload, T

Figure 2. Speedup versus workload size.

instructions contend with other active threads for execution
resources. To understand the cost of the firmware context
switching mechanism, we compare the performance of the
firmware mechanism with a hypothetical instant save/restore
mechanism.

Figure 2 shows the weighted speedup of several differ-
ent SMT and BMT designs. The �-axis shows the num-
ber of threads in a workload, �, which is assumed to be
equal to ����� for this study. The �-axis shows weighted
speedup of each design compared to a single-thread proces-
sor. On the curve where the points are labeled SMT-�, the
points represent SMT processors capable of running work-
loads of � threads together. There are three sets of curves
for BMT designs with 2, 4, or 6 physical contexts. Within
each set, there is a curve labeled firmware, for a processor us-
ing the firmware thread swapping mechanism, and a curve la-
beled instant which represents a processor with an idealized,
nearly instantaneous thread-swapping mechanism. The in-
stant mechanism requires only 1 cycle to save and restore the
architectural registers of the outgoing and incoming threads,
once the miss-to-memory is detected and a thread is flushed.

Figure 2 illustrates two effects. First, for each value of
�����, there is an optimal value of �����������. Second,
as ����� increases, the relative cost of the firmware thread
swapping mechanism increases too. The figure shows that
the gain from BMT peaks when ����������� � �. When
the ratio is larger than 2, the costs of running multiple threads
begin to outweigh the benefits. For a BMT processor, that
cost has two components: the cost of thread swapping and
the cost of interference between threads. The curves labeled

2 3 4 6 8
1

1.5

2

2.5

3

W
ei

gh
te

d
Sp

ee
du

p

Number of Threads in Workload

BMT−2

BMT−4

SMT
BMT
BMT w/o IRB
BMT w/o DRM

Figure 3. Performance of BMT with different
levels of hardware support.

instant, while being perhaps impractical, show the relative
contribution of these two effects. When � is small, the cost
of swapping is low. The cost of thread swapping comes from
contention for instruction queue space and load/store ports
from the thread-swapping instructions. Thus, at the BMT-2
design point, there is little reason to try to further optimize
the thread swapping mechanism, but for BMT-6, there is an
incentive to improve it.

For larger values of ����������� and larger �, the benefit
from increased memory parallelism is outweighed by a loss
of locality in the higher level caches. The loss of locality is
caused by having many threads in the workload. The optimal
����������� ratios suggested by this graph are for an average
over many workloads, but will vary with the particular threads
running. This represents an opportunity to further improve
performance by adaptively sizing the number of threads in a
workload based on the behavior of the constituent threads.

5.3 Hardware Support for Thread Swapping

The previous section compared the performance of our
baseline thread swapping mechanism with a hypothetical
one-cycle latency thread swapping mechanism. Our base-
line mechanism already includes some optimizations to re-
duce swapping latency. This section evaluates two of those
optimizations: the Dirty Register Mask (DRM) and the Inac-
tive Register Buffer (IRB).

The DRM, discussed in Section 3.1, allows the thread
swap to only save registers values that have been touched.
The IRB may be considered an optimization compared to a
purely software thread swap, where a context’s state is stored
using conventional loads and stores. Figure 3 shows the per-
formance of BMT processors with 2 or 4 physical contexts,
with varying levels of hardware support for thread swapping,
and of SMT processors with 2–6 contexts.

The two BMT features are not important for the BMT-2
processor, but are important for the BMT-4 processor. Of the
two, the DRM is more important. The benefit of the dirty-

register mask increases as more threads are run because of the
greater contention for functional units. A lesser effect may be
that programs are swapped in for less time when more threads
are present, and thus have time to dirty fewer registers.

Without an IRB, inactive registers could be stored directly
into memory (where they would typically be caught by the
cache). Thus, for the no-IRB configuration, the save-restore
instructions use the load/store units, which halves the rate at
which they may issue. In the no-IRB configuration, if a miss
occurs in the thread-swap microcode, the thread waits instead
of performing a second swap. Because such misses are un-
common in the BMT-2 configurations, there is little perfor-
mance impact. With a larger workload size, the IRB is im-
portant for good performance.

5.4 Sensitivity to Memory Hierarchy

The speedup provided by balanced multithreading is sen-
sitive to three parameters of the memory hierarchy: The size
of the caches, the latency to access the lowest level of cache,
and the latency to main memory. Figure 4 shows the perfor-
mance of SMT and BMT with different memory configura-
tions. Each group of bars shows the performance of different
processor designs with the same memory hierarchy. All con-
figurations have the L1 caches described in Table 1, but the
lower levels of the hierarchy are varied. The configurations
were chosen to study the sensitivity to individual memory-
system parameters. The y-axis represents weighted speedup.
For each group of bars, the speedup is computed relative to
a single-threaded processor with the same memory hierarchy.
As a result, the speedup for a design with a larger cache hier-
archy may be less than that for a design with a smaller cache.

The best ����������� ratio for a BMT system depends on
the memory system, so we show two BMT configurations
next to each corresponding SMT processor design. Above
each group of bars is shown the speedup of the better of the
two BMT bars over the adjacent SMT bar. All three of those
bars the same �����. For example, the first group of bars,
labeled Base, represents the memory configuration used for
all previous results in this paper: a 500 cycle memory latency
and a 14-cycle 2MB L2 Cache. As noted in the plot, a BMT-
2/4 design gets 26% speedup over an SMT-2 processor, and a
BMT-4/8 gets 16% speedup over an SMT-4 design.

Running more threads at the same time has a cost and a
benefit. Part of the cost is from increased contention in the
caches, predictors and other structures. The benefit is an in-
crease in the number of parallel memory accesses. Changes
to the memory parameters shift these costs and benefits.

A larger cache, as in Big$, reduces the number of op-
portunities to use coarse-grained thread switching. Also, a
slower cache increases the cost of misses caused by cache
contention, and increases the latency before the processor can
detect a main memory access. This is illustrated by the lower

Base FastMSlowM Big$ Small$Slow$ L3
1

1.5

2

2.5

3

Name
Base
FastM
SlowM
Big$
Small$
Slow$
L3

Size and Latency
2M 14/500
2M 14/350
2M 14/650
4M 14/500
1M 14/500
2M 30/500
256k/2M 14/30/500

26

16

20

8

29

23

20

11

28

20

9

7

9

8
W

ei
gh

te
d

Sp
ee

du
p

Memory Configuration

SMT−2
BMT−2/3
BMT−2/4

SMT−4
BMT4/6
BMT4/8

Figure 4. Speedup vs memory hierarchy size
and speed

additional speedup from BMT for the Slow$ group.
The L3 configuration has a third level of cache, which has

both the detrimental effects just mentioned. In this configu-
ration, context switching only occurs on an L3 miss, because
the firmware context switch mechanism is too slow to hide an
L3 hit. With a faster memory (FastM), the fraction of time
spent on context switches relative to total execution time in-
creases.

In the case of the larger cache for the Big$ configuration,
there are simply not enough misses to main memory to off-
set the increase in contention. For example, the BMT-4/6
processor with the Base memory configuration had, over all
workloads, 2.5 main memory accesses per 1000 committed
instructions. The same processor with the Big$ memory con-
figuration only had 0.8 main memory accesses per 1000 in-
structions. The larger cache significantly reduces the oppor-
tunity to benefit from thread swapping. At the same time, the
number of Data Cache misses which do not go to memory
increases. For BMT-4/6, with the Base memory, there are 16
L1 misses that do not go to memory per 1000 instructions.
For the Big $ configuration, there are 22 L1 misses per 1000
instructions that are filled without going to memory.

It should be noted that the lessened need for BMT with
large caches is primarily a function of the workload, rather
than the architecture. Even today, many commercial appli-
cations will exercise caches of this size much more heav-
ily. Thus, while cache sizes will increase, which reduces
the number of main memory accesses, which in turn reduces
the effectiveness of our technique, we expect this effect to
be largely mitigated by increases in application working set
sizes. Thus, when evaluating our technique, we feel it is fair
to focus on the results for the baseline memory configuration.

The bar-groups labeled FastM and SlowM show results
for processors with 350 and 650 cycle main memory laten-
cies, respectively. We use 500 cycles as the baseline main

2 3 4 6
1

1.5

2

2.5

3

W
ei

gh
te

d
Sp

ee
du

p

Number of Threads in Workload

SMT
SMT Store Miss Flush
BMT−2
BMT−2 Store Miss Swap
All with Strict Stores

Figure 5. Performance of SMT and BMT proces-
sors with strict store retirement policy.

memory latency, and we expect that real systems will reach
that level soon. As memory latency increases, the advan-
tage of adding more virtual contexts increases: With SlowM,
the BMT2/4 and BMT4/8 configurations significantly outper-
form BMT2/3 and BMT4/6, respectively.

5.5 Store Retirement Policies

All the architectures presented in this chapter allow store
instructions which miss in cache to partially complete. That
is, younger non-store instructions may commit, freeing up
space in the instruction window, even when a store’s result
has not yet been written to the L1 data cache. We believe that
this fairly reflects some modern processor designs. Neverthe-
less, we also evaluated an architecture with a strict store re-
tirement policy; younger instructions wait for a store to write
to the L1 cache. A strict store retirement policy might be
necessary in some systems to insure timely handling of in-
terrupts. With a strict retirement policy, a long-latency store
may cause a thread to fill up the instruction window, stalling
progress for all threads. To counteract this, we found that
swapping on long latency stores as well as loads produces
good results. Figure 5 evaluates SMT and BMT architectures
with a strict store retirement policy. This shows that, under
a strict store retirement policy, SMT and BMT architectures
both benefit significantly from flushing or swapping on stores.

5.6 Delayed Detection of Load Misses

In the baseline BMT configuration, a thread swap is trig-
gered when a load instruction takes longer than 25 cycles to
complete. The minimum latency for an L2 hit in the base-
line architecture is 17 cycles, but some loads take longer due
to contention at the L2 cache. Waiting an additional 8 cy-
cles avoids premature swapping. The simple wait-25-cycles
approach only requires a small counter for each active load
instruction. A alternative mechanism might include a signal
from the L2 cache after the tags has been checked. Detect-

BMT−2/3 BMT−2/4 BMT4/6 BMT4/8

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

∆
W

ei
gh

te
d

Sp
ee

du
p

Processor Configuration

5
15
25
35
65
95
Per−T

Figure 6. Performance of BMT processors with
different delays to initiate swapping on a miss.

ing a load miss and switching sooner may improve perfor-
mance, since the next thread begins executing sooner. How-
ever, flushing a thread too soon can prevent the execution of
a second load instruction, which would otherwise initiate a
second, parallel, main-memory access.

We evaluated the performance of 4 BMT designs with
different values for the load-execution to miss-detection la-
tency, �. Those results are shown in Figure 6. The value of
� is indicated in the legend. The �-axis shows the change in
weighted speedup for a given design when � is changed from
its baseline value of 25. Note that detecting an L2 miss af-
ter only 5 cycles would require either checking the L2 tags
very quickly, or a load hit predictor. Fortunately, detecting a
miss sooner actually decreases throughput. For example, if
L2 misses could be detected 5 cycles after a load first exe-
cuted, the weighted speedup of BMT-2/3 would drop by 0.05
(from 1.70, as indicated in Figure 1 or Table 4, to 1.65).

In all cases, increasing � to 35 increases the throughput of
BMT. However, with larger workloads, higher values of �may
reduce throughput. With a larger workload, it is more likely
that there is a ready-to-run thread waiting to be swapped in.
The best single value of � depends on the number of virtual
and physical contexts, and the particular set of benchmarks.
However, an even better policy would be one which sets a
different value of � for each thread.

It is profitable to delay swapping out a thread if it is likely
that additional main memory accesses can be initiated by
waiting. As illustrated in Figure 7, benchmarks differ con-
siderably in the number of main-memory accesses that may
occur in parallel. There is one subgraph for each bench-
mark we use. The �-axis shows the probability that no ad-
ditional main-memory accesses will be initiated following a
load which misses in the L2 cache. The �-axis shows time
in cycles after the first miss. Note that only subsequent ac-
cesses to different cache lines are counted. For perl amd
ammp, when a load misses in the L2, it is highly unlikely that
subsequent loads will initiate additional memory activity, so

0

1
ammp

0

1
art−110

crafty eon−rushmeier

galgel gap

gcc−166 gzip−graphic

mcf mesa

mgrid parser

perlbmk−makerand twolf

0 20 40 60
0

1
vortex−2

0 20 40 60
0

1
vpr−route

Figure 7. Probability, �, at time � after execut-
ing a load instruction which misses in L2, that
no further main-memory accesses will be initi-
ated.

those threads should be swapped out as soon as possible. For
gcc, even 60 cycles following a L2 miss, it is quite likely
that additional misses will occur before the first miss com-
pletes, so gcc should be swapped out after a longer delay.
We evaluated a static, per-thread swap-delay policy. This is
shown as the bar labeled Per–T in Figure 6. For this policy,
all threads are swapped out on a load which takes more than
20 cycles, except art, galgel, gap, gcc, and vpr, for
which � � ��. In all 4 cases, the Per–T policy performs better
than any single value of �. With this policy, BMT2/4 gets an
additional 3% speedup over single-thread execution.

We present the Per-T policy to show that there is bene-
fit from a dynamic policy which detects which threads have
high memory level parallelism. To implement such a policy,
� could be held in a counter which is periodically set to a
high value, and which is decremented each time no concur-
rent misses occur.

5.7 Quantifying the Cost of Additional Registers

The weighted speedup results presented in this paper do
not reflect any cycle time or pipeline length penalties that may
arise from adding physical contexts to a processor. In this
section, we attempt to quantify the cost of adding additional
physical contexts to an SMT processor, as opposed to adding
virtual contexts.

Table 4 lists the different architectures studied in previous

Type �� � ��� ���� ����� ���� ��	

Uni 1 1 1.00 128 190 0.46 5

SMT 2 2 1.46 128 252 0.58 6
3 3 1.89 ” 314 0.60 7
4 4 2.26 ” 376 0.62 7
6 6 2.73 ” 500 0.65 7
8 8 3.07 ” 628 0.72 8

BMT-2 2 3 1.70 128 252 0.58 6
2 4 1.84 ” ” ”
2 6 1.76 ” ” ”

BMT-4 4 6 2.57 128 376 0.62 7
4 8 2.64 ” ” ”

BMT-6 6 12 2.93 128 500 0.65 7

�� the number of physical contexts
� the number of threads in workload
��� the weighted speedup
���� the number of additional registers for renaming
����� the number of physical registers
���� the register file access time (ns)
��	
 the estimated number of stages at 10 Ghz

Table 4. Performance and register file speed.

sections. The speedups shown are for the base memory con-
figuration (see Table 1). The last two columns show estimates
of the register file access times for different architectures and
an estimate of the number of clock cycles that it would re-
quire if pipelined at 10 GHz. By this estimate, 3 additional
pipeline stages would be needed for an 8 context SMT pro-
cessor, compared to an otherwise similar 1-context proces-
sor. Our access time estimates do not quantify several addi-
tional costs of additional contexts. A slower register file read
time can add stages between issue and execute, which com-
plicates scheduling. A slower register file write time requires
additional hardware to hold bypassed results longer. And a
larger register file in turn increases the size of the renaming
table. Also, the additional pipeline stages required to tolerate
a larger register file fall in a particularly inopportune place in
the pipeline. Lengthening the pipeline at this point increases
load hit misspeculation penalties [4].

In previous sections, we simulate processors with a large
instruction window. The instruction window requires 128
registers beyond those required to hold programmer-visible
state (which is 62 per physical context). An alternate way to
reduce the size of the register file is to provide fewer of these
additional registers. Doing this does not negate the benefit
of BMT. If reducing the size of the instruction window in-
creases the performance of the processor, or makes room for
additional physical contexts, then BMT can still be used. Fig-
ure 8 shows that a BMT-2/4 processor configuration beats an
SMT-2 processor configuration, with fewer additional regis-
ters for renaming (a smaller instruction window).

64 96 128

1

1.2

1.4

1.6

1.8

W
ei

gh
te

d
Sp

ee
du

p

Number of Renaming Registers, R
ren

ST
SMT−2
BMT−2/4

Figure 8. Speedup vs instruction window size.
Weighted speedup is relative to single-thread
execution with 128 renaming registers.

6 Conclusions

This paper explores the benefits of adding coarse-grained
threading support to an SMT processor, creating an architec-
ture we call Balanced Multithreading. SMT allows the pro-
cessor to tolerate even the smallest latencies. CGMT is suffi-
cient to tolerate long memory latencies. We present a form of
CGMT which requires no changes to timing-critical proces-
sor resources such as the register file and the renaming table.
The combination of the two results in a processor that pro-
vides high single thread performance via a high clock rate,
shorter pipeline and high instruction-level parallelism; and
high memory parallelism and thread-level parallelism when
more threads are available.

We evaluate the combination of CGMT and SMT, over a
range of workload sizes, memory configurations, and several
context-switching optimizations, including a method for re-
ducing register saves.

We find that in the face of long memory latencies, balanced
multithreading can provide instruction throughput similar to a
wide SMT processor, but without many of the hardware costs.
In particular, we show that by adding support for balanced
multithreading, the throughput of an SMT processor can be
improved by 26%, with no significant changes to the core of
the processor, the cycle time, or the pipeline.

7 Acknowledgements

We would like to thank the anonymous reviewers for their
comments. Eric Tune was supported by an Intel Foundation
Fellowship. Other support for this research came from NSF
grants CCR-0311683 and CCR-0105743, and a grant from
Intel.

References

[1] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung,
G. D’Souza, and M. Parkin. Sparcle: An evolutionary proces-

sor design for large-scale multiprocessors. IEEE Micro, June
1993.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Por-
terfield, and B. Smith. The Tera computer system. In Interna-
tional Conference on Supercomputing, pages 1–6, June 1990.

[3] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Re-
ducing the complexity of the register file in dynamic super-
scalar processors. In In Proceedings of the 34th Annual Inter-
national Symposium on Microarchitecture, Dec. 2001.

[4] E. Borch, E. Tune, B. Manne, and J. Emer. Loose loops sink
chips. In Eigth International Symposium on High Performance
Computer Architecture, Feb. 2002.

[5] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kallaa, and S. R.
Kunkel. A multithreaded powerPC processor for commercial
servers. IBM J. Res. Dev., 44(6):885–898, 2000.

[6] F. J. Cazorla, E. Fernandez, A. Ramı́rez, and M. Valero. Im-
proving memory latency aware fetch policies for smt proces-
sors. In Proceedings of the 5th International Symposium on
High Performance Computing, pages 70–85. IEEE Computer
Society, October 2003.

[7] Compaq Computer Corp., Shrewsbury, MA. Alpha 21264 Mi-
croprocessor Hardware Reference Manual, Feb. 2000.

[8] J. Cruz, A. Gonzalez, M. Valero, and N. P. Topham. Multiple-
banked register file architectures. In International Symposium
on Computer Architecture(ISCA-27), 2000.

[9] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, B.-H. Lim,
M. S. Squillante, and C. E. Wu. Evaluation of multithreaded
processors and thread-switch policies. International Sympo-
sium on High Performance Computing, pages 75–90, 1997.

[10] R. Halstead and T. Fujita. MASA: a multithreaded proces-
sor architecture for parallel symbolic computing. In 25th
Annual International Symposium on Computer Architecture,
pages 443–451, 1998.

[11] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the pen-
tium 4 processor. Intel Technology Journal Q1, 2001.

[12] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Ni-
shimura, Y. Nakase, and T. Nishizawa. An elementary pro-
cessor architecture with simultaneous instruction issuing from
multiple threads. In 19th Annual International Symposium on
Computer Architecture, pages 136–145, May 1992.

[13] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith.
Informing memory operations: Providing memory perfor-
mance feedback in modern processors. In 23rd Annual In-
ternational Symposium on Computer Architecture, pages 260–
270, 1996.

[14] N. S. Kim and T. Mudge. Reducing register ports using de-
layed write-back queues and operand pre-fetch. In 17th Inter-
national Conference on Supercomputing, June 2003.

[15] J. D. Kubiatowicz. Closing the window of vulnerability in mul-
tiphase memory transactions: The alewife transaction store.
Master’s thesis, Massachusetts Institute of Technology, Feb.
1993.

[16] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A
multithreading technique targeting multiprocessors and work-
stations. In Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 308–318, Oct. 1994.

[17] J. Lo, S. Parekh, S. Eggers, H. Levy, and D. Tullsen. Software-
directed register deallocation for simultaneous multithreading
processors. In IEEE Transactions on Parallel and Distributed
Systems, 10(9), Sept. 1999.

[18] T. Mowry and S. Ramkissoon. Software-controlled multi-
threading using informing memory operations. In Seventh In-

ternational Symposium on High Performance Computer Archi-
tecture, 2000.

[19] I. Park, M. Powell, and T. Vijaykumar. Reducing register ports
for higher speed and lower energy. In 35th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-35),
Nov. 2002.

[20] J. Redstone, S. Eggers, and H. Levy. Mini-threads: Increasing
TLP on small-scale SMT processors. In Ninth International
Symposium on High Performance Computer Architecture, Feb.
2003.

[21] R. H. Saavedra-Barrera, D. E. Culler, and T. von Eicken. Anal-
ysis of multithreaded architectures for parallel computing. In
Second Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 169–178, July 1990.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically characterizing large scale program behavior. In Tenth
International Comference on Architectural Support for Pro-
gramming Languages and Operating Systems(ASPLOS 2002),
Oct. 2002.

[23] P. Shivakumar and N. Jouppi. CACTI 3.0: An integrated cache
timing, power and area model. In Technical Report 2001/2,
Compaq Computer Corporation, Aug. 2001.

[24] B. Smith. The architecture of HEP. In On Parallel MIMD
computation: HEP supercomputer and its applications, pages
41–55, 1985.

[25] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading architecture. In Eighth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[26] R. Thekkath and S. Eggers. The effectiveness of multiple hard-
ware contexts. In Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, 1994.

[27] J. Tseng and K. Asanovic. Banked multiported register files for
high-frequency superscalar microprocessors. In In Proceed-
ings of ISCA-30, June 2003.

[28] D. M. Tullsen. Simulation and modeling of a simultaneous
multithreading processor. In 22nd Annual Computer Measure-
ment Group Conference, Dec. 1996.

[29] D. M. Tullsen and J. A. Brown. Handling long-latency loads in
a simultaneous multithreading processor. In 34th International
Symposium on Microarchitecture, Dec. 2001.

[30] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo,
and R. L. Stamm. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous multithreading pro-
cessor. In 23rd Annual International Symposium on Computer
Architecture, May 1996.

[31] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultane-
ous multithreading: Maximizing on-chip parallelism. In 22nd
Annual International Symposium on Computer Architecture,
pages 392–403, June 1995.

[32] C. Waldspurger and W. Weihl. Register relocation: Flexible
contexts for multithreading. In 20th Annual International Sym-
posium on Computer Architecture, 1993.

[33] W. Yamamoto and M. Nemirovsky. Increasing superscalar per-
formance through multistreaming. In Conference on Parallel
Architectures and Compilation Techniques, pages 49–58, June
1995.

[34] K. C. Yeager. The MIPS R10000 superscalar microprocessor.
IEEE Micro, 16(2):28–40, 1996.

